Тепловизионное изображение можно выводить в черно-белом либо цветном формате. Перепады температуры, которые нужно измерять на термограмме, составляют, как правило, доли градуса, в то время как полный сигнал соответствует приблизительно 300 К, т.е. исходное изображение обладает малым контрастом и его необходимо обрабатывать. Без предварительной обработки на ЭВМ полученная картина неинформативна. ЭВМ позволяет делать следующие операции обработки изображения:
1) усреднение;
2) изменение контраста получившихся изображений;
3) раскраску в квазицвет контрастированных изображений.
Усреднением добиваются того, что случайные шумы подавляются, и полезный сигнал становится более четким.
Контрастирование изображения и раскраска в квазицвет дают возможность усилить восприятие величины тепловых контрастов. Контрастированием называется уменьшение диапазона измеряемой величины, которому соответствует полный масштаб изменения яркости или цветовой палитры.
Разновидность тепловидения, при которой исследуется временная динамика температурных полей, иногда называют динамическим тепловидением. Обрабатывая последовательные термокарты, можно определить динамику температуры в каких-то интересующих нас точках, эволюцию во времени размеров определенных нагретых участков кожи и т.п. [2]
Наиболее яркий результат применения тепловидения в биологии Для измерений тепловизор наводят на поверхность черепной коробки, с которой предварительно снимают скальп.
Термоэнцефалоскопия позволяет "увидеть" волны, распространяющиеся по поверхности коры головного мозга.
К сожалению, тепловые карты мозга человека можно получить только в ходе нейрохирургических операций на открытом мозге, поскольку из-за сильного поглощения ИК-излучения скальп и толстая черепная коробка оказываются непреодолимой преградой для сигналов из мозга.
Инфракрасное тепловидение тела человека дает информацию о температуре верхних слоев кожи - рогового слоя эпидермиса и некоторых подлежащих слоев общей толщиной около 100 мкм, поскольку, как показано специальными измерениями, электромагнитные волны ИК-диапазона затухают, пройдя в биологических тканях расстояние всего около 100 мкм. Температура этого слоя определяется балансом тепла за счет его отдачи в окружающую среду и притока за счет крови, притекающей из теплового ядра организма. Поэтому фактически ИК-тепловидение это способ оценить кожный кровоток в различных участках тела.
Наиболее распространенным применением ИК-тепловидения в медицине является визуализация кровоснабжения нижних конечностей. Если кровоснабжение в них нарушено, то температура дистальных участков резко снижена. Регистрируя размер областей со сниженной температурой, можно определить степень выраженности заболевания, а также эффективность терапевтических мероприятий.
Динамическое тепловидение позволяет отследить изменения температуры тела при различных дозированных воздействиях - функциональных пробах. Например, после снятия одежды кожа пациента оказывается в ином температурном режиме, и происходит длительная (15-20 мин) адаптация. Динамика измерения температуры тела в этот период служит критерием нормального функционирования системы терморегуляции. Плавное монотонное изменение температуры - обычная нормальная реакция, отсутствие динамики - свидетельство неблагополучия. Таким образом, например, контролируют развитие болезни Рейно, при которой нарушается терморегуляция: снижение температуры в комнате вызывает закономерное снижение температуры кожи здоровых испытуемых и не оказывает воздействие на больных этой болезнью. Отсутствие динамики при такой пробе характерно и для больных с поврежденной вследствие травмы иннервацией конечности.
Метод динамического тепловидения открыл возможности визуализировать реакцию организма в зонах Захарьина-Геда. В прошлом веке русский врач Захарьин и австрийский ученый Гед обнаружили, что определенные участки поверхности тела сигнализируют о неблагополучии в соответствующем ему внутреннем органе. В частности, при сердечной недостаточности боль ощущается с левой стороны и отдает в левую руку. Однако границы этих областей удается оконтурить с большим трудом, так как приходится опираться лишь на субъективные реакции пациентов. Использование тепловидения основано на том, что в случае болевой реакции какого-либо органа на функциональную пробу возникает сосудистая реакция в соответствующей зоне Захарьина-Геда - это приводит к изменению локальной температуры кожи. [4]
Наряду с различными онкологическими применениями, тепловидение дает хорошие результаты в травматологической клинике при переломах, остеомиелите, ушибах, артритах, определении границ ожогов и обморожении и т.д.
Важной областью применения термографии являются сосудистые заболевания. Различные поражения вен и артерий, диабетическая ангиопатня, спазм сосудов головного мозга хорошо выявляются при тепловизионном наблюдении и термографии.
Высокая диагностическая ценность тепловизионного метода подтверждена при острых воспалительных процессах в брюшной полости: остром холецистите, панкреатите, аппендиците, абсцессах и воспалительных инфильтратах. При хронических, и особенно опухолевых. поражениях желудка, печени, поджелудочной железы и. т.д. информативность тепловизионной картины пока невелика.
Весьма полезным оказалось использование тепловидения в акушерско-гинекологической практике, хотя надежды на очень высокую эффективность тепловизионной техники при определении локализации плаценты и наличия плода оказались слишком оптимистичными; этой области тепловидение может рассматриваться лишь как совершенно безвредный вспомогательный способ диагностики. Самодеятельное и даже особое диагностическое значение тепловидение приобретает в акушерстве и гинекологии при динамическом наблюдении процесса развития беременности и послеродовых состоянии. [3]
Оптическое излучение тела человека надежно регистрируется с помощью современной техники счета фотонов. В этих устройствах используют высокочувствительные фотоэлектронные умножители (ФЭУ), способные регистрировать одиночные кванты света и выдавать на выходе кратковременные импульсы тока, которые затем считаются с помощью специальных электронных счетчиков.
Измерения, проведенные в ряде лабораторий, показали, что 1 см2 кожи человека за 1 с спонтанно излучает во все стороны 6 - 60 квантов, главным образом, в сине-зеленой области спектра. Светимости различных участков кожи отличаются - наиболее сильное излучение исходит от кончиков пальцев, гораздо слабее, например, от живота или предплечья. Это свечение не связано с наличием загрязнений на коже и зависит от функционального состояния пациента, снижаясь в покое и повышаясь с ростом его активности.
Можно индуцировать свечение кожи, например, с помощью обработки ее перекисью водорода или воздействия на кожу предварительной засветкой. Сильное последействие - фосфоресценцию - вызывает излучение на длине волны 254 нм, соответствующее пику поглощения ДНК. Предварительная засветка вызывает рост свечения в тысячи раз, которое затем спадает во времени по сложной кинетической кривой с несколькими постоянными времени от единиц до десятков минут.
Оптическое излучение кожи не является тепловым. Интенсивность теплового излучения в оптическом диапазоне ничтожна - с 1см2 поверхности тела один квант в среднем может излучаться лишь за много секунд.
Наиболее вероятный механизм спонтанного свечения - это хемилюминесценция, вызванная перекисным окислением липидов, которое сопровождается появлением радикалов, т.е. молекул в возбужденном электронном состоянии. При взаимодействии таких молекул в определенном (малом) проценте случаев происходит излучение света. При индуцированном свечении возможны и другие механизмы, например, измерено излучение при активации определенных клеток крови - нейтрофилов, связанное с генерацией активных форм кислорода. [4]
Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.
Низкочастотные механические колебания с частотой ниже нескольких килогерц дают информацию о работе легких, сердца, нервной системы. Регистрировать движения поверхности тела человека можно дистанционными или контактными датчиками в зависимости от решаемой задачи. Например, в фонокардиографии для измерения акустических шумов, создаваемых сердцем, используют микрофоны, устанавливаемые на поверхности тела. Электрические сигналы с датчиков усиливают и подают на регистрирующее устройство либо ЭВМ и по их форме и величине делают заключения о движениях тех или иных участков тела.