Смекни!
smekni.com

Відкриття та характеристика генетичного коду (стр. 3 из 3)

Багато властивостей генетичного коду забезпечуються властивостями молекул Т-РНК і АРС-аз. Триплетний і нерозривний антикодон виділений в антикодонной петлі Т-РНК спеціальними модифікованими нуклеотидами. Цим забезпечуються триплетность і нерозривність впізнанних кодонів матриці. Усі антикодони однаково триплетны, тому, починаючи від знаку, що ініціює, трансляція здійснюється триплетними кроками, тобто формується певна рамка (фаза) трансляції - одна з трьох можливих. В цьому випадку межкодоные знаки (коми) не потрібні, а кодони не перекриваються. Кодони, що ініціюють, у E. coli пізнаються спеціальною фракцією т-РНКF - Met, що переносить модифіковану амінокислоту форміл-метіонін. Термінальний нонсенс взагалі не має своїх фракцій Т-РНК, а пізнаються спеціальними білковими чинниками терминации.

Однозначність коду в напрямі кодон - амінокислота забезпечується строгою специфічністю АРС-аз. Кожна АРС-аза дізнається єдину амінокислоту, тому неоднозначність виключена або маловірогідна. У основі систематичної виродженості лежать правила неоднозначності спаровування кодон-антикодон, встановлені Ф. Криком [8, 11]. Один антикодон може дізнаватися один, два або три кодони, що розрізняються по третій позиції. Згідно з правилами неоднозначного спаровування, систематична виродженість в парах кодонів забезпечується окремими фракціями Т-РНК, U, що мають, G або I (інозин) в трьох позиціях антикодонів. Вырожденность 3 у ізолейцину (Ile) вимагає фракцію Т-РНК з I в третій позиції антикодону. Такий нуклеотид там дійсно є. Виродженість 4 вимагає не менше двох фракцій Т-РНК, виродженість 6 - не менше трьох фракцій. Всього генетичний код E. coli вимагає не менше 32 фракцій Т-РНК. Реально у E. coli повне число генів Т-РНК дорівнює 86 для 79 фракцій з різними антикодонами. Отже, багато фракцій Т-РНК частково дублюють один одного.

Тепер розглянемо не менш вражаючу властивість симетрії генетичного коду. Генетичний код можна зображувати в круговій формі [11], де внутрішній круг відповідає першим позиціям кодонів, середнє кільце - другим позиціям і зовнішнє кільце - третім позиціям. Сильні основи зображені непідрозділеними секторами зовнішнього кільця, а слабкі - підрозділеними. Властивість симетрії полягає в наступній:

1) проведемо вісь симетрії через центр круга перпендикулярно площини листа і повернемо круг на 180° в площині листа. При цьому усі сильні і слабкі основи зберігають свої позиції, тобто поєднуються з однойменними;

2) проведемо через центр площину симетрії, перпендикулярну площині листа і рядкам тексту. При дзеркальному віддзеркаленні круга в цій площині усі сильні основи міняються місцями із слабкими і навпаки;

3) проведемо через центр площину симетрії, перпендикулярну площині листа і паралельну рядкам тексту. При дзеркальному віддзеркаленні круга в цій площині сильні основи міняються на слабкі і навпаки.

Генетичний код універсальний в тому сенсі, що його основна частина однакова для усіх форм життя на Землі. Цей вивід обгрунтований досвідом масового секвенування генів і білків. Майже завжди колінеарна відповідність генів і білків узгоджується з правилами генетичного коду. Проте в деяких екзотичних системах трансляції (мітохондрії тварин, рослин і грибів, хлоропласти рослин, найдрібніші бактерії - мікоплазми, війчаті прості та ін) знайдені мінорні відхилення в генетичному коді, а також зміни правил неоднозначного спаровування і наборів антикодонів і фракцій Т-РНК. Це своєрідні ''діалекти'' генетичного коду, що відбивають специфіку їх еволюції і функціонування.

Поза сумнівом, що генетичний код став продуктом добіологічної молекулярної еволюції і продовжував частково еволюціонувати надалі. У стохастичному процесі молекулярної еволюції властивості генетичного коду могли бути:

1) або наперед заданими фізико-хімічними характеристиками компонент і умов,

2) або відібрані як адаптивні серед альтернативних варіантів,

3) або фіксовані випадково. Гіпотези виникнення генетичного коду різною мірою враховують ці можливості [10, 11].

Так, гіпотеза ''замороженого випадку'' (Ф. Крик, 1968 рік) вважала, що історично була фіксована перша випадкова, але задовільна система кодування, яка далі була розмножена, піддалася еволюційному ускладненню і оптимізації, оскільки забезпечувала прискорене відтворення. Ясно, що крайній, чисто випадковий варіант цієї гіпотези нереальний, оскільки код має очевидні невипадкові системні властивості. Ясно також, що ці властивості відбивають невипадковий, високо організований характер генетичного коду, пов'язаний з правилами синонімії кодових серій.

Таким чином, генетичний код E. coli є не випадковим конгломератом відповідностей між кодонами і амінокислотами, а високоорганізовану систему відповідностей, підтримувану складними молекулярними механізмами. По вираженню Френціса Крика, що вніс вирішальний вклад у відкриття і вивчення коду, ''це ключ до молекулярної біології, оскільки він показує, як дві великі мови полімерів - мова полінуклеотидів і мова поліпептидів пов'язані між собою'' [9].

Висновок

Стара істина свідчить: без минулого немає майбутнього. У генетичному коді міститься інформація про походження людства, він - віддзеркалення усіх змін, які відбувалися з людьми упродовж тисячоліть.

Кожну цивілізацію на певному етапі чекає вибір - або подальший розвиток, або саморуйнування. Щоб прогресувати, потрібний деякий імпульс, завдяки якому з'являються наука і мистецтво, пізнаються основні закони устрою Всесвіту. Розшифровка генетичного коду людини - найбільше відкриття біогенетиків кінця ХХ століття.

Код - це набір певних знаків і символів - своєрідна біохімічна азбука. У нім - формула людського життя. Є в коді і так би мовити, розділові знаки, вони означають початок і кінець життя, тобто її часові межі.

Біогенетики стверджують, що із смертю людини генетичний код не припиняє існування. Він зберігається в генофонді його нащадків і, таким чином, формується багатомільярдна людська популяція.

Не знаючи даних свого генетичного коду, його власник не має поняття про те, що його чекає. Код - це успадкована інформація про подальшу долю. Лікарі вже намагаються запобігти прояву спадкових захворювань. І доки таке втручання на генному рівні не представляє загрози, яка може спричинити небажані зміни. Інша справа - урбанізація. Розвиваючи виробництво, створюючи нові продукти, у тому числі в області фармакології, людство здатне змінити генетичний матеріал. На думку учених, подібні процеси можуть привести до мутацій.

Отже генетичний код має кожен, і він може закінчитися. З іншого боку, по відношенню до усього людства генетичний код безперервний, в нім немає сигналів, що вказують на зникнення людського роду.

Література

1. Медична енциклопедія. - М., 1996.

2. Основи генетики. - К., 2000.

3. Біологія: Навч. посіб. / За ред. та пер. з рос.В.О. Мотузного. - 3тє вид., випр. і допов. - К.: Вища шк., 2002. - 622 с.: іл.

4. Genetic Code page in the NCBI Taxonomy section.

5. NCBI: "The Genetic Codes", Compiled by Andrzej (Anjay) Elzanowski and Jim Ostell.

6. Jukes TH, Osawa S, The genetic code in mitochondria and chloroplasts., Experientia. 1990 Dec 1; 46 (11-12): 1117-26.

7. Азимов А. Генетический код. От теории эволюции до расшифровки ДНК. - М.: Центрполиграф, 2006. - 208 с. - ISBN 5-9524-2230-6.

8. Ичас М. Біологічний код. М.: Світ, 1971.

9. The Genetic Code. Cold Spring Harbor Symp. Quant. Biol. Cold Spring Harbor; N. Y. 1966.31.

10. Молекулярна генетика. М.: Світ, 1963.

11. Ратнер В.А. Молекулярна генетика: Принципи і механізми. Новосибірськ: Наука, 1983.