Смекни!
smekni.com

Влияние гипотермии на содержание белков в тканях растений (стр. 2 из 3)

При изучении влияния развития морозоустойчивости на синтез белков было идентифицировано семейство белков, ассоциированное с развитием морозоустойчивости у пшеницы. Данное семейство белков специфическое для злаков и их содержание регулируется низко температурой. Антитела, полученные против белка с мол. массой 50 кДа, реагируют, по крайней мере, с пятью членами данного семейства. Используя эти антитела, были определены содержание и локализация данного семейства белков в акклиматизированных к холоду всходах пшеницы. Вестерн-блоттинг субклеточных частиц показал наличие всех членов семейства в цитозоле и очищенных ядерных частицах. После 21 дня холодовой акклиматизации озимой пшеницы эти белки накапливались вплоть до 0.9% от всех растворимых экстрагируемых белков. Их клеточная концентрация составляла 1.34. Иммуногистохимическая локализация показала, что содержание этих белков наиболее высоко в зоне сосудистого перехода. Эти белки не были обнаружены в зрело ксилеме, в верхушечной меристеме побегов или в боковых корневых примордиях. Данная тканеспецифичная индукция позволяет предполагать, что чувствительные клетки в областях, где вода имеет тенденцию замерзать в первую очередь, для своей защиты требуют более высокого содержания этих белков.

Полученные данные хорошо соответствуют тому факту, что отрастание после замораживания в значительно степени зависит от жизнеспособности данной части побега. Электронно-микроскопический анализ с использованием иммунно-золотой метки показал, что эти белки присутствуют в цитоплазме и в нуклеоплазме. В то же время они не были найдены в клеточных стенках или других клеточных органеллах. Исследование криозащитного действия invitroпоказало, что белок WCS120 так же эффективно, как БСА и сахароза, защищает лактатдегидрогеназу от денатурации в ходе замораживания. Эти результаты показывают, что данное семейство белков может быть вовлечено в общий механизм защиты растворимых частиц клетки. Их присутствие в нуклеоплазме также позволяет предложить как их возможную функцию – предохранение процессов транскрипции. Высокая гидрофильность, высокое содержание данных белков и устойчивость этих белков при кипячении позволяют предлагать, что они могут обеспечивать особую микросреду, необходимую для выживания клетки в чувствительно зоне сосудистого перехода во время стресса при замораживании.

При исследовании взаимосвязи ответов растения на различные типы стресса было обнаружено, что солевой стресс увеличивает морозоустойчивость у некоторых видов травянистых растений. С целью понять молекулярные основы увеличения индуцируемо холодовым стрессом морозоустойчивости при помощи двумерного электрофореза в ПААГ был проанализирован эффект обработки солевым раствором на состав общих белков растений картофеля. После 24 часовой обработки NaCl, во время которой холодоустойчивость возросла в три раза, были выявлены девять индуцируемых солевым стрессом белков. Прямое сравнение этих белков с белками, индуцируемыми низкотемпературным стрессом и экзогенно абсцизовой кислотой, позволило установить, что пять индуцируемых солевым стрессом белков индуцировались также низкотемпературным стрессом, а семь – обработкой абсцизовой кислотой. Три белка 13/7.0, 27/6.6 и 48/6.9) индуцировались и холодом и экзогенно абсцизовой кислотой и были связаны с изменением морозоустойчивости. После 6 часов обработки солью, перед тем как развивалась холодоустойчивость, эндогенны уровень абсцизовой кислоты в листьях кратковременно увеличивался в шесть раз. Результаты позволяют считать, что солевая индукция холодового закаливания включает синтез холодоиндуцируемых и индуцируемых абсцизовой кислотой белков, а также то, что изменение белкового синтеза можно связать с увеличением концентрации абсцизовой кислоты в ответ на солевой стресс. Эти данные также позволяют предполагать, что некоторая часть белков, индуцируемых холодом и абсцизовой кислотой, связана с солевым стрессом.

2. Влияние гипотермии на содержание водорастворимых белков в тканях бактерий и водорослей

Изменение экспрессии водорастворимых белков в ответ на понижение температуры наблюдается также и у водрослей и у бактерий. Во время резкого понижения температуры в бактериях временно экспрессируются на высоком уровне «индуцируемые холодом белки». При помощи двумерного электрофореза в ПААГ были идентифицированы некоторые из этих белков. Несмотря на это, общие функции данных белков, как ответа организма на холодовой шок, в настоящее время все еще неясны. В последнее время наибольшее внимание исследователей сфокусировано на группе «белков холодового шока», синтез которых, как было показано, в значительно степени индуцируется во время холодового шока и после него и которые играют важную регуляторную роль в физиологии адаптации микроорганизмов к низким температурам. E. Coli, B. Subtilisи B. Cereusобладают семейством белков, насчитывающим, по меньшей мере, 3 – 7 белков CSP– небольших кислых белков, которые имеют между собой более 45% идентичности в последовательности аминокислот. Последние данные подтверждают, что члены этого широко распространенного семейства белков могут invitroдействовать как на уровне транскрипции, так и на уровне трансляции. Тем не менее, все функции CSP остаются неизвестны. К тому же, в соответствии с недавно полученными данными, в индукции синтеза CSP также играет важную роль посттрансляционная регуляция. В этот процесс могут быть также вовлечены рибосомы. Это предположение находится в соответствии с моделью, в которой, как предполагается, рибосомы являются температурным сенсором в бактериях.

Перенос Enterococcusfaecalisв условия низко температуры вызывал усиление экспрессии 11 белков холодового шока. Кроме того, мезофильные прокариоты синтезировали также 10 белков холодовой акклиматизации, 5 из которых совпадали с белками холодового шока, во время продолжительного роста при температуре 80С.

Listeriamonocytogenes– грампозитивный продовольственный патоген – способен расти при температуре холодильника. При снижении температуры от 37 до 50C у L. monocytogenesиндуцируется синтез двенадцати белков холодового шока с молекулярными массами 48,6; 41,0; 21,8; 21,1; 19,7; 19,2; 18,8; 17,2; 15,5; 14,5 и 14,0 кДа. Это было установлено в экспериментах по включению метки с последующим двумерным электрофорезом в геле. Штамм SLCC53 показал аналогичный ответ на холодовой шок. Белки холодово акклиматизации наблюдались в культурах штамма 10403S в условиях роста при 50C, четыре из этих белков, с молекулярными массами 48,0; 21,1; 19,7 и 18,8 кДа, также являлись белками холодового шока. Два чувствительных к холоду транспозон-индуцированных мутанта включали метку менее эффективно, чем нечувствительны к холоду родительски штамм, но в то же время ответная индукция белков холодового шока у изученных мутантов была очень похожа на ответную индукцию родительского штамма.

Дальне шее изучение основного белка холодового шока Listeriamonocytogenesпри помощи двумерного электрофореза показало, что его изоэлектрическая точка составляет 5.1. При помощи N-терминального сиквенса полученного при помощи двумерного электрофореза белка была установлена его полная идентичность с негеминовым железосвязывающим ферритином из Listeriainnocua. Очистка этого ферритин-подобного белка позволила установить, что его нативная молекулярная масса составляет около 100–110 кДа, что свидетельствует о том, что он состоит из шести 18 кДа субъединиц. Нозерн-блот анализ показал присутствие его 0.8 kb мРНК в клетках во время фазы экспоненциального роста, а также значительное увеличение количества мРНК этого белка как после падения, так и после возрастания температуры.

CSPA является основным белком холодового шока E. coli, его синтез значительно возрастает в ответ на холодовой шок. Аминокислотная последовательность CSPA имеет 43% идентичности «домену холодового шока» эукариотического Y-box семе ства белков, члены которого взаимодействуют с РНК и ДНК для регуляции их функций. Показано, что CSPA кооперативно связывается с денатурировавшими под действием низко температуры одноцепочечными РНК, размером больше, чем 74 основания. Для его кооперативного связывания необходима минимальная концентрация CSPA 2.7х10-5 М, что значительно ниже, чем присутствующая в клетке после холодового шока концентрация CSPA. Для связывания CSPA не было установлено специфических последовательностей РНК, что показывает, что он может связываться с широким спектром последовательностей. Когда состоящий из 142 оснований 5'-нетранслируемый участок собственной мРНК CSPA был использован как субстрат для рибонуклеаз А и Т1, добавление CSPA значительно стимулировало гидролиз РНК путем предотвращения образования РНКазоустойчивых связей из-за образования стабильных вторичных структур в 5'-нетранслируемом участке. Эти данные показывают, что связывание CSPA с РНК дестабилизирует вторичную структуру РНК и делает ее доступно для рибонуклеаз. Предполагается, что CSPA действует как шаперон РНК для предотвращения образования вторично структуры у РНК при низких температурах. Эта функция CSPA может быть необходима для эффективно трансляции мРНК при низких температурах и, по-видимому, может также оказывать влияние на процесс транскрипции.

При падении температуры в клетках Escherichiacoliобнаружена сильная индукция синтеза важнейшего белка холодового шока – CSPA. Поскольку этот белок весьма консервативен, был использован подход, основанный на PCR с использованием пары дегенерированных праймеров, полученных из высоко консервативных областей cspA-связанных белков, чтобы доказать присутствие как минимум трех связанных с cspA генов в Lactacoccuslactis. Один из них, cspB, был клонирован и секвенирован. Он кодирует белок из 66 аминокислот, который обладает 60% тождественности последовательности с CSPA из Escherichiacoli. После холодового шока уровень транскриптов мРНК CspB увеличивался, что было показано при помощи нозерн-блот гибридизации. Кроме того, наблюдалась индукция активности CSPB-зависимой бета-галактозидазы. Эти результаты указывают на то, что ген cspB из L. Lactisиндуцируется холодовым шоком.