Смекни!
smekni.com

Закон природы (стр. 5 из 5)

Возможности проверки этих постулатов в период построения СТЭ были весьма ограниченными. Считается, что постулат о случайности мутирования впоследствии получил подтверждение на молекулярном уровне. Однако молекулярные мутации неадекватны тем их фенотипическим проявлениям, которые наблюдали ранние генетики, само понимание мутации изменилось. На молекулярном уровне есть некоторые основания говорить о пространственно-временной неопределенности единичного мутационного акта, но (по аналогии с квантовой механикой) неопределенность не может быть априорно экстраполирована на уровень фенотипических свойств, подлежащих естественному отбору.

Одни теоретики исходят из того, что тело подобно механизму, другие – представляют его организмом. При этом в одних механицистских теориях тело может рассматриваться как наиболее совершенный механизм, а в других аналогичных теориях – особо не выделяться из совокупности других механизмов. Точно также у одних сторонников органицистского подхода появлением нашего организма венчается процесс развития земных существ (как у основателя теории «естественного отбора» и «эволюции видов» Чарльза Дарвина), а у других сторонников данного подхода человеческое существо оказывается лишь элементом, входящим в число остальных представителей животного и растительного мира, мало чем отличающегося от большинства из них с точки зрения своих генетических качеств (такова точка зрения современной генетики). Таким образом, в современном познании человеческой телесности из-за влияния этих двух метафор – органицистсткой и механицистской – мы сталкиваемся сразу с несколькими парадоксами. «Механицисты» рассматривают то человекоподобную машину, то машиноподобного человека; «органицисты» же видят в человеке то «воплощение чаяний» природы, то, всего-навсего, одно из природных созданий, не обладающее особыми привилегиями по сравнению со всеми остальными.

Хорошо известно, что в эволюции живых организмов на Земле важнейшую роль играют мутации. Одним из главных мутагенных факторов принято считать ионизирующие излучения. Сегодня многие исследователи приходят к выводу, что излучения радиоактивных веществ и космические лучи играют, может быть, определяющую роль в естественной эволюции жизненных форм[3].

Эволюция генов происходит как в результате приобретения новых последовательностей, так и в результате перераспределения уже имеющихся. Новые последовательности могут быть введены с помощью векторов или появляться при мутировании существующих генов. Возникновение новых последовательностей возможно также в результате перестроек генетического материала. Такие перестройки могут изменить и функции имеющихся генов путем создания для них новых условий регуляции.

«Традиционная» эволюция генома связана с механизмами, которые хорошо известны в течение многих лет. У прокариот за осуществление генетических обменов ответственны внехромосомные элементы. Плазмиды способствуют конъюгации бактерий, в то время как фаги осуществляют инфекционный процесс. И те и другие иногда переносят вместе с автономным репликоном гены клетки-хозяина. У эукариот в каждой генерации происходит реципрокная рекомбинация между соответствующими сайтами на гомологичных хромосомах; очень редко она сопровождается дупликацией или перестройкой локусов. Такая реорганизация, по существу, представляет собой побочный эффект обычных механизмов, включаемых в генетическую рекомбинацию и (или) синтез ДНК (таких, как неравный кроссинговер или конверсия гена). Механизмы, ответственные за транслокацию между негомологичными хромосомами, остаются неизвестными. Потенциальная возможность для изменения прокарио-тических и эукариотических геномов обеспечивается способностью определенных последовательностей перемещаться из одного сайта в другой. Эти последовательности получили название транспозирующихся элементов, или транспозонов.


10. Как ведут себя макросистемы вдали от равновесия? Поясните понятие диссипативной структуры по И. Пригожину

Когда мы говорим о поведении сложных диссипативных макросистем, существующих вдали от равновесия (а таких систем – большинство в нашем мире, и мы сами – суть они) подчиняюшихся законам термодинамики – на прогноз будущего появляются серьёзнейшие ограничения – второе начало с неизбежностью обуславливает появление горизонта прогноза – такое удаление по параметру времени от начальных условий системы, с момента которого все наши прогнозы будут гаданием на кофейной гуще как бы ни полна была наша информация о начальных условиях.

Диссипативная структура, характеризуется нарушением симметрии, множественными выборами и корреляциями в макроскопических масштабах.

Для диссипативных систем можно ввести удобное фазовое пространство. Оно включает в себя ансамбль имеющихся переменных и поэтому становится бесконечномерным пространством в случае непрерывной среды, где различные характеристики являются пространственно распределенными величинами. Поэтому удобнее всего работать с фазовым пространством, когда оно содержит дискретное число переменных, и в особенности когда это число конечно и, желательно, невелико[4].

По мнению И. Пригожина синергетический взгляд на мир ведет к революционным изменениям в нашем понимании случайности и необходимости, необратимости природных процессов, позволяет дать принципиально новое истолкование энтропии и радикально меняет наше представление о времени. Предисловие к английскому изданию книги «Порядок из хаоса» И. Пригожин публикует под заголовком «Новый диалог человека с природой».

Свое понимание феномена самоорганизации И. Пригожин связывает с понятием диссипативной структуры – структуры спонтанно возникающей в открытых неравновесных системах. Классическими примерами таких структур являются такие явления, как образование сотовой структуры в подогреваемой снизу жидкости (т.н. ячейки Бенара), «химические часы» (реакция Белоусова – Жаботинского), турбулентное движение и т.д.

В книге И. Пригожина и И. Стенгерс «Порядок из хаоса» процесс возникновения диссипативных структур объясняется следующим образом. Пока система находится в состоянии термодинамического равновесия, ее элементы (например молекулы газа) ведут себя независимо друг от друга, как бы в состоянии гипнотического сна, и авторы работы условно называют их генами. В силу такой независимости к образованию упорядоченных структур такие элементы неспособны. Но если эта система под воздействием энергетических взаимодействий с окружающей средой переходит в неравновесное «возбужденное» состояние, ситуация меняется. Элементы такой системы «просыпаются от сна» и начинают действовать согласованно. Между ними возникают корреляции, когерентное взаимодействие. В результате и возникает то, что Пригожин называет диссипативной структурой. После своего возникновения такая структура не теряет резонансного возбуждения, которое ее и порождает, и одним из самых удивительных свойств такой структуры является ее повышенная «чувствительность» к внешним воздействиям. Изменения во внешней среде оказываются фактором генерации и фактором отбора различных структурных конфигураций. Материальная система такого типа включается в процесс структурогенеза или самоорганизации. Если предполагается, что именно неравновесность является естественным состоянием всех процессов действительности, то естественным оказывается и стремление к самоорганизации как имманентное свойство неравновесных процессов. Схематическое описание возникновения диссипативных структур и связанного с ними процесса структурогенеза объясняет и название дисциплины. Термин «синергетика» образован от греческого «синергиа», которое означает содействие, сотрудничество. Именно «совместное действие» или когерентное поведение элементов диссипативных структур и является тем феноменом, который характеризует процессы самоорганизации[5].

Список литературы

1. Блюменфельд Л.А. Информация, термодинамика и конструкция биологических систем // Соросовский Образовательный Журнал. 2001. №6.

2. Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2001.

3. Чижевский А.Л., Шишина Ю.Г. В ритме солнечных бурь. М.: Наука, 1969.

4. Шебалин О.Д. Физические основы механики и акустики. М.: Высшая школа, 2005.

5. Эйген М., Винклер Р. Игра жизни. М.: Наука, 1979.


[1] Шебалин О.Д. Физические основы механики и акустики. М.: Высшая школа, 1981. С. 111.

[2] Блюменфельд Л.А. Информация, термодинамика и конструкция биологических систем // Соросовский Образовательный Журнал. 2001. № 6. С. 12.

[3] Чижевский А.Л., Шишина Ю.Г. В ритме солнечных бурь. М.: Наука, 1969. С. 29.

[4] Эйген М., Винклер Р. Игра жизни. М.: Наука, 1979. С.121-130.

[5] Блюменфельд Л.А. Информация, термодинамика и конструкция биологических систем // Соросовский Образовательный Журнал. 2001. № 6. С. 122.