Смекни!
smekni.com

Происхождение и принципы эволюции: между равновесием и нелинейностью (стр. 1 из 9)

Томский межвузовский центр дистанционного образования

Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Контрольная работа

по дисциплине «Концепция современного естествознания»

Выполнила

Афонина Юлия Владимировна

Г. Нефтеюганск

1. Как происходит обмен веществ и энергией в живой клетке? Чем он отличается от обменных процессов в неживой природе?

Обмен веществ (метаболизм) — это совокупность изменений и превращений вещества и энергии в организмах, обеспечивающих их рост, развитие, жизнедеятельность, самовоспроизведение и самосохранение. Процесс метаболизма — это непрерывно протекающие реакции потребления и усвоения поступающих веществ, превращения их в собственное тело организма (ассимиляции), а также противоположные реакции — разрушения некоторых веществ (диссимиляции). Ассимиляция может быть автотрофной (фотосинтез у зеленых растений) и гетеротрофной (пищеварение у животных). При химическом разложении молекул выделяется энергия, скрытая в форме химических связей в исходном соединении, и становится доступной для живой клетки. Примеры диссимиляции — дыхание, брожение. Пищеварение включает в себя процессы расщепления. Реакции между органическими соединениями идут очень медленно. В живой клетке выработались ускорители реакций — ферменты: биологические катализаторы, присутствующие во всех клетках и имеющие белковую природу. Их активность зависит от условий окружающей среды, определенной рН, и отсутствия ингибиторов. Они не изменяются и не расходуются в ходе реакций, как и катализаторы. Огромна их производительность — одна молекула фермента может за 1 мин разложить до 5 млн молекул субстрата — вещества, на которое действует фермент.

В центре этих превращений в клетке находится АТФ, которая синтезируется из АДФ и Н3Р04 за счет световой энергии или энергии, выделяемой при гликолизе, брожении или дыхании. При гликолизе АТФ выделяется энергия, необходимая для совершения всей работы живого организма — от создания градиентов концентрации ионов и сокращения мышц до синтеза белка. Углеродные остовы для синтеза метаболитов поставляет процесс распада липидов (рис. 1).

Обменные процессы в неживой природе характеризуются круговоротом веществ, цикличностью. В круговорот втянуты все геосферы, в них происходят процессы переноса веществ, меняющие их локальную концентрацию. С появлением жизни в обменные процессы, происходящие в неживой природе, стали втягиваться и процессы биосферы, которая представляет единство живого и минеральных элементов, вовлеченных в сферу жизни

Рис. 1. Распад липидов, поставляющий углеродные скелеты для синтеза сахарозы и пр. (часть реакций происходит в глиоксисомах, а часть — в митохондриях и цитоплазме)

В обменных процессах, происходящих в неживой природе, нельзя выделить взаимосвязанных процессов ассимиляции и диссимиляции. Хотя все эти процессы происходят циклически во всех геосферах, они не направлены на цели роста, самосохранения, воспроизводства, адаптации и других характеристик, свойственных живым организмам. Согласно концепции Вернадского, «миграция химических элементов на земной поверхности и в биосфере, в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (кислород, углекислый газ, водород и др.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Землю в течение всей геологической истории».

Структурную основу метаболизма обеспечивает клеточный матрице, определяющий пространственное размещение молекулярных компонентов клетки, занятых в процессе жизнедеятельности. Среди клеточных органелл особую роль играют хлоропласты клеток зеленых растений и митохондрии любых организмов. В хлоропластах происходит связывание энергии солнечного света в процессе фотосинтеза. В митохондриях же извлекается энергия, заключенная в химических связях, поступающих в клетку питательных веществ.

2. Дайте представление о фазовых переходах, приведите примеры фазовых переходов разных типов. Поясните суть явлений сверхпроводимости и сверхтекучести

Фазы — это различные однородные части физико-химических систем. Вещество однородно, когда все параметры состояния вещества одинаковы во всех его элементарных объемах, размеры которых велики по сравнению с межатомными состояниями. Смеси различных газов всегда составляют одну фазу, если во всем объеме они находятся в одинаковых концентрациях. Одно и то же вещество в зависимости от внешних условий может быть в одном из трех агрегатных состояний — жидком, твердом или газообразном. Фазы — это устойчивые состояния определенного агрегатного состояния. Понятие фазы более широкое, чем понятие агрегатного состояния.

В зависимости от внешних условий система может находиться в равновесии либо в одной фазе, либо сразу в нескольких фазах. Их равновесное существование называется фазовым равновесием.

Испарение и конденсация — часто наблюдаемые фазовые переходы воды в окружающей природе. При переходе воды в пар происходит сначала испарение — переход поверхностного слоя жидкости в пар, при этом в пар переходят только самые быстрые молекулы: они должны преодолеть притяжение окружающих молекул, поэтому уменьшаются их средняя кинетическая энергия и соответственно температура жидкости. Наблюдается в быту и обратный процесс — конденсация. Оба эти процесса зависят от внешних условий. В некоторых случаях между ними устанавливается динамическое равновесие, когда число молекул, покидающих жидкость, становится равным числу молекул, возвращающихся в нее. Молекулы в жидкости связаны силами притяжения, которые удерживают их внутри жидкости. Если молекулы, имеющие скорости, которые превышают среднюю, находятся вблизи поверхности, они могут ее покинуть. Тогда средняя скорость оставшихся молекул понизится и температура жидкости уменьшится. Для испарения при постоянной температуре нужно сообщить жидкости некоторое количество теплоты: Q = rт, где r — удельная теплота парообразования, которая уменьшается с ростом температуры. При комнатной температуре для одной молекулы воды теплота парообразования составляет 10-20 Дж, тогда как средняя энергия теплового движения равна 6,06 • 10-21 Дж. Это значит, что в пар переходят молекулы с энергией, которая в 10 раз больше энергии теплового движения. При переходе через поверхность жидкости потенциальная энергия быстрой молекулы растет, а кинетическая уменьшается. Поэтому средние кинетические энергии молекул пара и жидкости при тепловом равновесии равны.

Исследования показали, что с поверхности Мирового океана, составляющего 94 % земной гидросферы, за сутки испаряется около 7 000 км3 воды и примерно столько же выпадает в виде осадков. Водяной пар, увлекаемый конвекционным движением воздуха, поднимается вверх и попадает в холодные слои тропосферы. По мере подъема пар становится все более насыщенным, затем конденсируется, образуя дождевые капли. В процессе конденсации пара в тропосфере за сутки выделяется около 1,6-1022 Дж теплоты, что в десятки тысяч раз превосходит вырабатываемую человечеством энергию за то же время.

Кипение — процесс перехода жидкости в пар в результате всплывания пузырьков, наполненных паром. Кипение происходит во всем объеме. Разрыв пузырьков у поверхности кипящей жидкости свидетельствует о том, что давление пара в них превышает давление над поверхностью жидкости. При температуре 100 °С давление насыщенных паров равно давлению воздуха над поверхностью жидкости (так была выбрана эта точка на шкале). На высоте 5 км давление воздуха вдвое меньше и вода закипает там при 82 °С, а на границе тропосферы (17 км) — приблизительно при 65 °С. Поэтому точка кипения жидкости соответствует той температуре, при которой давление ее насыщенных паров равно внешнему. Слабое поле тяготения Луны (ускорение свободного падения у ее поверхности равно всего 1,7 м/с2) не способно удержать атмосферу, а при отсутствии атмосферного давления жидкость мгновенно выкипает, поэтому лунные «моря» безводны и образованы застывшей лавой. По той же причине безводны и марсианские «каналы».

Вещество может находиться в равновесии и в разных фазах. Так, при сжижении газа в состоянии равновесия фаз объем может быть каким угодно, а температура перехода связана с давлением насыщенного пара. Кривая равновесия фаз может быть получена при проекции на плоскость (р, Т) области перехода в жидкое состояние. Аналитически кривая равновесия двух фаз определяется из решения дифференциального уравнения Клаузиуса—Клапейрона. Аналогично можно получить кривые плавления и возгонки, которые соединяются в одной точке плоскости (р, Г), в тройной точке (см. рис. 7.1), где в определенных пропорциях находятся в равновесии все три фазы. Тройной точке воды соответствует давление 569,24 Па и температура -0,0075 °С; углекислоты — 5,18 • 105 Па и 56,6 °С соответственно. Поэтому при атмосферном давлении р, равном 101,3 кПа, углекислота может быть в твердом или газообразном состоянии. При критической температуре физические свойства жидкости и пара становятся одинаковыми. При температурах выше критической вещество может быть только в газообразном состоянии. Для воды — Т= 374,2 °С, р = 22,12 МПа; для хлора — 144 °С и 7,71 МПа соответственно.

Фазовые переходы бывают нескольких родов. Во время фазового перехода температура не меняется, но меняется объем системы.

Фазовыми переходами первого рода называют изменения агрегатных состояний вещества, если: температура постоянна во время всего перехода; меняется объем системы; меняется энтропия системы. Чтобы произошел такой фазовый переход, нужно данной массе вещества сообщить определенное количество теплоты, соответствующее скрытой теплоте превращения.