Активно используемое в науке со второй половины 1980-х годов понятие хаоса, буквально перевернуло современную физику. Исследования в этой области породили новые компьютерные технологии, специальную графическую технику, способную воспроизводить фрактальные структуры высочайшей сложности. Более того, новая область познания дала новые понятия, требующие своего концептуального осмысления: фрактал, прерывистость, континуальность, периодичность и т. д. Примерами проявления действия хаоса изобилует реальность - "капризы" погоды, поведение автомобилей в дорожной пробке, блуждание облаков по небу, завихрения струйки сигаретного дыма и потока нефти по нефтепроводу, необъяснимость причин гибели многих самолетов и многое другое. Физики-теоретики пришли к выводу о том, что хаосу изначально присущи внутренние интенции к порядку.
Показательным является и тот факт, что физика начала XX столетия увлеклась изучением "заоблачных далей" бытия (элементарные частицы, кварки, глюоны), а в настоящее время возвращается к феноменам обыкновенного масштаба, к примеру, к облакам. Фундаментальная наука XX столетия стала восприниматься людьми как разновидность искусства, подобно высокой моде "прет-а-порте", как элитарная деятельность для избранных специалистов. Одно дело, поведение частиц в микромире, задаваемом экспериментатором, в моделируемом постановочном эксперименте, к примеру, в пузырьковой камере ядерного ускорителя, и совсем другое - состояние и поведение частиц в реальных условиях, в луже с мутной водой, в атмосфере, либо в человеческом мозге. Выяснилось, что ответить труднее всего на самые простые вопросы. Так, многие простейшие системы (одна молекула воды, одна клеточка сердечной ткани, нейрон головного мозга) обладают сложнейшим непредсказуемым хаотичным поведением, при ассоциациях с себе подобными в отдельных элементах системы самопроизвольно возникает порядок, то есть порядок и хаос в них сосуществуют одновременно и лишь вступают в действие в различные моменты времени. От чего зависят интенции к усложнению либо к упрощению организации систем физики, пока понять не могут.
В настоящее время найдено множество прикладных проблем изучения теории хаоса. К примеру, в математической физике разрабатывается теория бифуркаций Файгенбаума, решается вопрос о квантовом хаосе и его соотнесении с квантовой механикой, в астрономии специалисты по хаосу пытаются найти объяснение моделям гравитационной неустойчивости, истолковывающей происхождение метеоритов. Так для описания современной геометрии пространства-времени, для создания новой геометрии природы часто используется понятие "фрактальная структура". Термин "фрактал" [< лат.fractus -состоящий из фрагментов, frangere - разбивать] означает "создавать неправильные фрагменты". Понятия "фрактал" и "фрактальная геометрия", появившиеся в конце 1970-х гг., с середины 1980-х прочно вошли в обиход математиков и программистов. Впервые их предложил использовать как рабочие термины Бенуа Мандельброт в 1975 г. для обозначения нерегулярных, самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 г книги Мандельброта "Фрактальная геометрия природы". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 гг. в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Фрактал - это грубая или фрагментированная геометрическая форма, которая может быть разделена на части, каждая из которых (по крайней мере, приблизительно), уменьшенная копия всего целого. В свете новых исследований можно дать несколько определений фрактала:
-расходящийся критерий: любая форма, обладающая таким необычным свойством, что когда вы измеряете длину, область, поверхность области или объем в дискретных единицах измеряемое значение изменяется по экспоненте на размер дискретной единицы;
-геометрическая фигура или естественный предмет, обладающий следующими характеристиками:
а) часть имеет ту же структуру или форму, как и целое, за исключением того, что они при различном масштабе могут немного искажаться;
б) форма сильно неправильна и фрагментирована, и остается такой независимо от масштаба.
Существует много математических структур, которые являются фракталами. Например: снежинка Коха, кривая Пеано, множество Мандельброта, аттрактор Лоренца и другие. Фракталы с большой точностью описывают многие физические явления и образования реального мира: облака, горы, турбулентные течения, береговые линии, корни, ветки деревьев, легкие животных и человека, что далеко не соответствует простым геометрическим фигурам.
В настоящее время идет процесс объединения разнообразных работ по изучению фракталов в единую систему и осознания фундаментальной эвристической значимости понятия фрактальности мироздания. Детерминизм фрактального описания подразумевает поиск и интерпретацию масштабных инвариантов, характеризующих нерегулярность, изрезанность формы на различных масштабах. Природа демонстрирует нам не просто высокую степень, а совершенно другой уровень сложности. Число различных масштабов длин в природных структурах практически бесконечно". Существование этих структур призывает изучать те формы, которые Евклид отбросил как "бесформенные", исследовать морфологию "аморфного". Таким образом, естественнонаучное описание наглядных моделей природы переходит к ее реальному отражению с учетом многовариантности и сложности природных процессов. Фрактальный процесс рассматривается как цепь самоподдерживающихся изменений, самоорганизующихся вокруг самодостраиваемого внутреннего образца. Иначе говоря, природа и человек в ней могут быть представлены не как конгломерат изолированных объектов и, тем более, не как механическая система, а как целостный живой организм, способный к фрактальному "блужданию" в определенных, очень узких границах.
Биологи адаптируют теории хаоса и фракталов для изучения иммунной системы человека с ее миллиардами компонентов и человеческого мозга, обладающего способностью к познанию и отражению объектов внешнего мира и даже самопознанию. Пересматриваются даже теоретические основы экологии и равновесного существования экологических систем. Традиционно полагалось, что в живой природе существуют стационарные состояния равновесия, вокруг которых колеблются показатели численности популяций растений, животных, микроорганизмов, данное состояние динамического равновесия обеспечивает наилучшее использование пищевых ресурсов и обусловливает минимальные энергетические потери. Согласно современным предположениям, природа выступает как сложнейшая нелинейная система, движимая "странными" аттракторами с исчисляемыми фрактальными (нецелочисленными) размерностями. Американскому эпидемиологу У. Шафферу удалось просчитать динамику подчиненности многих заболеваний с помощью методики реконструкции фазового перехода. Оказалось, что эпидемическое распространение тяжелых заболеваний, таких как корь, ветряная оспа, грипп, можно предсказывать с большой долей вероятности.
Многочисленные исследования ученых в области хаоса заставляют по-новому оценивать тезис И. Пригожина "Порядок из хаоса", многие склонны переформулировать его и говорить о "порядке внутри хаоса". В синергетических взаимодействиях главенствующая роль принадлежит бифуркациям - мельчайшим подпороговым возмущениям, накопление которых ведет к изменению в системе в целом. Причем в аспекте кооперативных взаимодействий рассматриваются как физико-химические, биологические, так и социальные системы.
По нашему мнению, преувеличение роли синергетики и механическое перенесение ее на почву социобиологических взаимодействий неправомочно и поспешно. Нельзя отрицать, что синергетическое видение мира есть достижение науки XX столетия, оно значительно расширило возможности постижения бытия. Сейчас становится понятным, что в сложных системах не только бифуркации несут в себе созидающую роль, но и важно соответствие любой системы внешней, тоже динамически изменяющейся среде.
М. И. Штеренберг приходит к выводу, что роль бифуркаций проявляется уже на стадии отклонения системы от состояния равновесия (на уровне первоначальных флуктуации). Но в процессе биологической эволюции роль бифуркаций, в качестве которых выступают мутации генома, может быть либо нейтральной, либо, в большинстве случаев, отрицательной, и лишь 1 % всех генных мутаций организма оказывается полезным для него. Следовательно, для того чтобы существовать достаточно долго и устойчиво, организму приходится бороться (гасить) мутации генома.
Видный представитель французского Просвещения Поль Анри Гольбах полагал, что "наука - враг случайностей". Такова в общем смысле научная парадигма классицизма, к XX столетию она кардинально изменилась, выдвинув именно случайность на передовые исследовательские позиции, что было зафиксировано в принципе "индетерминизма". На рубеже 1980-90-х гг. в современной физике удалось преодолеть давнее противостояние детерминизма и индетерминизма, вписав случайность в рамки закономерности. Философски этот вывод может быть осмыслен, как возвращение от механистического "принципа детерминизма" и неклассического "индетерминизма" к исконному диалектическому принципу всеобщей связи предметов и явлений.
Современные исследования становящихся систем позволяют пересмотреть классический принцип причинности, когда следствие (явление, событие в мире живой природы) однозначно вытекает из причины. В новых концепциях построения микро- и мегамира следствие способно выступать в роли аттрактора (целевого фактора) и даже предопределять с помощью опережающего воздействия причину. К примеру, информационная причинность, определяющая поведение систем в соответствии с поступающей информацией. Для этого объекту необходимо сначала "запомнить" свое первоначальное состояние, а затем, пройдя через серию стадий видоизменения, возвратиться к нему.