На основании этих и других опытов Палладин в 1912 г. в статье «Значение дыхательных пигментов в окислительных процессах растений и животных» представил общую теорию химизма дыхания, разделив основное уравнение дыхания на анаэробную (1) и аэробную (2) части:
гдеR— это окрашенный дыхательный пигмент, способный отнимать водород от субстрата, aRH2— бесцветный дыхательный хромоген. На первом, анаэробном, этапе дыхания глюкоза окисляется за счет отнятия водорода, который с помощью фермента (редуктазы) передается на дыхательный пигментR(активация водорода!). По Палладину, дыхательный субстрат окисляется с участием воды, от которой тоже отнимается водород. Согласно первому уравнению весь С02 дыхания анаэробного происхождения. На втором, аэробном, этапе дыхательный хромоген (RН2) регенерирует в окисленную форму. Кислород, по Палладину, необходим не для включения в дыхательный субстрат, а для отнятия электронов и протонов от RН2, в результате чего образуется вода. В дальнейшем теория Палладина об анаэробной и аэробной фазах дыхания и о роли воды в дыхательном процессе полностью подтвердилась.
В том же 1912 г. появилась работа немецкого биохимика Г. Виланда, который также пришел к заключению о том, что биологическое окисление связано с отнятием водорода. Этот вывод он сделал, исходя из результатов модельных опытов. В качестве субстрата использовался этиловый спирт СН3СН2ОН, а в качестве окислителя — палладий в губчатой форме (так называемая палладиевая чернь). Происходило отнятие электронов и протонов и образовывался альдегид СН3СНО. Чтобы регенерировать восстановленный палладий и сделать реакцию долгоидущей, Виланд вводил хинон:
Эта реакция проводилась в небиологической системе и не предусматривала участие кислорода и воды.
Экспериментальные доказательства участия воды в окислении субстрата дыхания и роли 02 как конечного акцептора водорода были получены лишь в 1955 г. в работе Б. Б. Вартапетяна и A. Л. Курсанова. Опыты ставились с этиолированными проростками пшеницы, которым давали 180 в составе 02 или Н20, а через 2 ч анализировали содержание 180 в С02 дыхания
В состав С02 при дыхании тяжелый изотоп кислорода входил из меченой воды, но не из молекулярного кислорода.
Из всех приведенных выше данных следует, что окисление органических веществ в ходе дыхания связано с отнятием водорода и что теория Лавуазье о сходстве дыхания и горения не соответствует действительности.
3.Каталитические системы дыхания
Окисление дыхательных субстратов в ходе дыхания осуществляется с участием ферментов. Ферменты как белковые катализаторы, помимо свойств, присущих неорганическим катализаторам, обладают рядом особенностей: высокой актианостью, высокой специфичностью по отношению к субстратам и высокой лабильностью. Их пространственная организации зависящая от нее активность изменяются под действием внешних и внутренних факторов. Эти свойства обеспечивают возможность тонкой регуляции обмена веществ на уровне ферментов.
Типы окислительно-восстановительных реакций. Существуют четыре способа окисления, и все они связаны с отнятием электронов:
1) непосредственная отдача электронов, например:
3) присоединение кислорода
4) образование промежуточного гидратированного соединения с последующим отнятием двух электронов и протонов:
Оксидоредуктазы.
Поскольку окисление одного вещества (донора электронов и протонов) сопряжено с восстановлением другого соединения (их акцептора), ферменты, катализирующие эти реакции, называют оксидоредуктазами. Все они относятся к I классу ферментов:
Донор (Д) отдает электроны и протоны, акцептор (А) принимает их, а энзим (Е) осуществляет реакцию переноса. Существуют три группы оксидоредуктаз:
а) анаэробные дегидрогеназы передают электроны различным промежуточным акцепторам, но не кислороду;
б) аэробные дегидрогеназы передают электроны различным акцепторам, в том числе кислороду;
в) оксидазы способны передавать электроны только кислороду.
Анаэробные дегидрогеназы. Это двухкомпонентные ферменты, коферментом которых может быть NAD+(никотинамидадениндинуклеотид):
При окислении субстрата NAD+превращается в восстановленную форму NADH, а второй протон субстрата диссоциирует в среду (NADH+ Н + ). К анаэробным NAD-зависимым дегидрогеназам относятся такие ферменты, как алкогольдегидрогеназа, лактатдегидрогеназа, малатдегидрогеназа и др. Коферментом анаэробных дегидрогеназ может быть также NADP+(никотинамидадениндинуклеотидфосфат), содержащий на одну фосфатную группировку больше, чем NAD+ . NADP- зависимыми дегидрогеназами являются изоцитратдегидрогеназа, глюкозо-6-фосфатдегидрогеназа, 6-фосфоглюконатдегидрогеназа и др.
Субстратная специфичность фермента зависит от его белковой части. Многие NAD- и NADP-зависимые дегидрогеназы нуждаются в присутствии ионов двухвалентных металлов. Например, алкогольдегидрогеназа содержит ионы цинка.
Окисленные и восстановленные формы коферментов анаэробных дегидрогеназ могут взаимопревращаться в реакции, катализируемой ферментом NAD(Р)-трансгидрогеназой:
NADPH + NAD+ = NADP+ + NADH
Анаэробные дегидрогеназы передают водород, т. е. электроны и протоны, различным промежуточным переносчикам и аэробным дегидрогеназам.
Аэробные дегидрогеназы. Это также двухкомнонентные ферменты, получившие название флавиновых (флавопротеины).
Помимо белков, в их состав входит прочно связанная с ними простетическая группа — рибофлавин (витамин В2).
Различают два кофермента этой группы: флавинмононуклеотид (FMN), или желтый дыхательный фермент Варбурга, и флавинадениндинуклеотид (FAD).
FMN(рибофлавин-5-фосфат) содержит гетероциклическое азотистое основание — диметилизоаллоксазин, спирт рибит (производное рибозы) и фосфат:
В FADкроме FMNимеется еще один нуклеотид — аденозинмонофосфата:
Активной группой в реакции присоединения и отдачи электронов и протонов в FMNи FADслужит изоаллоксазин. Взаимодействие с восстановленным переносчиком, например NADH, происходит следующим образом:
Примером дегидрогеназы, в состав которой входит FAD, является сукцинатдегидрогеназа. Доноры электронов для аэробных дегидрогеназ — анаэробные дегидрогеназы, а акцепторы — хиноны, цитохромы, кислород.
Цитохромная система. Среди оксидаз очень важную роль играют железосодержащие ферменты и переносчики, относящиеся к цитохромной системе. В нее входят цитохромы " и цитохромоксидаза. Включаясь в определенной последовательности в процесс переноса электронов, они передают их от флавопротеинов на молекулярный кислород.
Все компоненты цитохромной системы содержат железопорфириновую простетическую группу.
При переносе электронов цитохромами железо обратимо окисляется и восстанавливается, отдавая или приобретая электрон и изменяя таким образом свою валентность. В дыхательной цепи направление транспорта электронов определяется величиной окислительно-восстановительного потенциала цитохромов.
В этой системе передавать электроны непосредственно на кислород способна только цитохромоксидаза (цит. а + а3). Из всех известных оксидаз она имеет наибольшее сродство к кислороду. Ингибиторами цитохромоксидазы являются СО, цианид, азид. Б растительных митохондриях кроме цитохромоксидазы функционирует оксидаза, не подавляемая цианидом и названная альтернативной оксидазой. Например, в митохондриях початков ароидных активность цианидустойчивой оксидазы в 10 раз превышает активность цитохромоксидазы.
Пероксидаза и каталаза. К пероксидазам относят целую группу ферментов, использующих в качестве окислителя пероксид водорода: классическую пероксидазу, NAD-пероксидазу, NADP-пероксидазу, пероксидазу жирных кислот, глутатионпероксидазу, цитохромпероксидазу и др. Все они работают по следующей схеме, где А — субстраты:
В последние 2 — 3 десятилетия показана полифункциональность пероксидаз. Помимо пероксидазной, у них имеется оксидазная функция, т. е. способность переносить электроны в отсутствие пероксидного кислорода на молекулярный кислород. Пероксидаза может также функционировать как анаэробная дегидрогеназа, например NADH-дегидрогеназа, передающая электроны от восстановленных пиридиновых нуклеотидов на разные акцепторы.
Пероксид водорода, помимо пероксидазы, расщепляется также каталазой, в результате чего образуется молекулярный кислород. В реакции участвуют две молекулы пероксида, одна из которых функционирует как донор, а другая — как акцептор электронов (см. выше).