Смекни!
smekni.com

Мембранные потенциалы и их ионная природа (стр. 2 из 2)

Потоки приблизительно равны по величине, но сдвинуты во времени. Благодаря этому сдвигу во времени и возможно появление потенциала действия.

Потенциал действия, возникнув в одном участке нервной клетки, быстро распространяется по всей ее поверхности.

Распространение потенциала действия обусловлено возникновением локальных токов, циркулирующих между возбужденным и невозбужденным участками клетки.

В состоянии покоя внешняя поверхность клеточной мембраны имеет положительный потенциал, а внутренняя - отрицательный.

В момент возбуждения полярность мембраны изменяется на обратную: ее внешняя поверхность заряжена отрицательно по отношению к внутренней (рисунок).

В результате этого между возбужденным и невозбужденным участками мембраны (B и H) имеется разность потенциалов. Наличие разности потенциалов приводит к появлению между этими участками электрических токов, называемых локальными токами или токами действия. На поверхности клетки локальный ток течет от невозбужденного участка к возбужденному; внутри клетки он течет в обратном направлении.

Локальный ток, как и любой электрический ток, оказывает раздражающее действие на соседние невозбужденные участки и вызывает увеличение проницаемости их мембран. Это приводит к снижению в них потенциала покоя.

Когда деполяризация достигает критического значения, в этих участках возникают потенциалы действия, а в том участке, который ранее был возбужденным, в это время уже происходят восстановительные процессы реполяризации. Вновь возбужденный участок, в свою очередь, становится электроотрицательным и возникающий локальный ток раздражает следующий за ним участок.

Этот процесс многократно повторяется и обусловливает распространение импульсов возбуждения по всей длине клетки в обоих направлениях. В нервной системе прохождение импульсов только в определенном направлении обусловлено наличием синапсов, обладающих односторонней проводимостью.

Под влиянием локальных токов волна возбуждения распространяется вдоль волокна без затухания (бездекрементное проведение). Это обусловлено тем, что локальные токи только деполяризуют мембрану до критического уровня, а потенциалы действия в каждом участке мембраны поддерживаются независимыми ионными потоками, перпендикулярными к направлению распространения возбуждения.

Скорость уменьшения мембранного потенциала до критического уровня зависит от разности потенциалов между возбужденным и невозбужденным участками и от кабельных свойств волокна: электрической емкости и сопротивления мембраны, сопротивлений аксоплазмы и окружающей среды.

Кабельные свойства волокна обеспечивают деполяризацию мембраны до критического уровня, а последующая диффузия натрия в клетку усиливает деполяризацию и обеспечивает незатухающее проведение импульса.

Количественно процесс может быть представлен следующим образом. Скорость распространения потенциала действия определяется в основном тем временем, которое необходимо для критической деполяризации мембраны. Обозначим деполяризацию до критического уровня "Dj ". Тогда "Dj ", емкость мембраны "с" и заряд "Dq", необходимый для деполяризации мембраны на "Dj " будут:

(4)

Заряд мембраны и ее потенциал изменяется вследствие протекания локального тока "I". Тогда время "t", в течение которого заряд мембраны изменяется на Dq, а потенциал на "Dj " будет

равно:

(5)

Из уравнений (4) и (5) получим:

(6)

Величина локального тока "I" по закону Ома определяется разностью потенциалов "U" между возбужденным и невозбужденным участками мембраны и сопротивлением "R" всех участков, по которым протекает локальный ток:

Сопротивление "R" суммируется из сопротивлений всех последовательных участков, по которым протекает локальный ток: мембраны, цитоплазмы, окружающей клетку жидкости.

В основном оно определяется сопротивлением мембраны. Подставляя значение " I " в уравнение (6), получим:

(7)

Учитывая, что "Dj " и "U" величины постоянные, можно написать:

(8)

где k - коэффициент пропорциональности.

Уравнение (8) показывает, что время деполяризации мембраны и, следовательно, время проведения возбуждения пропорциональны произведению "RC", называемому постоянной времени мембраны. Тогда скорость проведения возбуждения будет обратно пропорциональна постоянной времени мембраны.

Скорость проведения импульса возрастает с увеличением диаметра волокна. Это объясняется тем, что с увеличением диаметра уменьшается сопротивление, приходящееся на единицу длины волокна.

В нервных волокнах характер распространения возбуждения зависит от наличия или отсутствия в них миелиновых оболочек. В безмякотных волокнах возбуждение распространяется непрерывно вдоль всей мембраны. Все участки мембраны при этом в свое время становятся возбужденными. В мякотных нервных волокнах возбуждение арспространяется несколько по иному.

Мякотные нервные волокна имеют толстые миелиновые оболочки, которые через 1 - 3 мм прерывается с образованием так называемых перехватов Ранвье.

В электрическом отношении миелин является изолятором; его удельное сопротивление в 10 млн раз превышает удельное сопротивление раствора Рингера.

В результате этого локальные токи через миелиновые оболочки протекать не могут; они циркулируют между перехватами Ранвье. При возбуждении одного перехвата Ранвье между ним и следующим перехватом возникают локальные токи и импульс как бы перескакивает на второй перехват, со второго - на третий и т.д. Такой способ проведения нервного импульса называется сальтаторным.

При блокировании одного перехвата Ранвье каким-либо анестезирующим веществом, например кокаином, импульс сразу передается на третий перехват. При блокировании сразу двух перехватов импульс дальше распространяться не может: сопротивление между первым и четвертым перехватами велико, и локальный ток между ними не достигает порогового значения.

В результате сальтаторного способа передачи скорость распространения первого импульса в мякотных волокнах примерно в 10 раз выше, чем в безмякотных, при одинаковом диаметре волокон.

Помимо этого, сальтаторный способ проведения возбуждения является более экономичным, поскольку в этом случае ионные потоки проходят не через всю поверхность клетки, как при непрерывном распространении, а только через поверхность в области перехватов Ранвье.


Список использованных источников

1. Волькенштейн М.В. Общая биофизика: Монография - М.: Наука, 1978. – 599 с.

2. Биофизика: Учебник / Тарусов Б.Н., Антонов В.Ф., Бурлакова Е. В. и др. – М.: Высшая школа, 1968. – 464 с.

3. Ю.А. Владимиров, Д.И. Рощупкин, А.Я. Потапенко, А.И. Деев Биофизика: Учебник. - М.: Медицина, 1983.

4. Ремизов А.Н. Медицинская и биологическая физика: Учеб. для мед. спец. Вузов. – М.: Высшая школа, 1999. – 616 с.