Смекни!
smekni.com

Nano Technology Essay Research Paper Nanotechnlogy18 seems (стр. 2 из 2)

Electronics is fueled by miniaturization. Working smaller has led to the tools capable of manipulating individual atoms like the proteins in a potato manipulate the atoms of soil and water to make copies of itself (Drexler, Merkle paraphrased). The secret to self replication, biological or synthetic, is prefabricated building blocks. Biology uses atoms. Atoms are as new and squeaky clean as the instant they condensed out of pure energy of the Big Bang, come in 92 flavors (elements), each atom is identical (electronically) to any other atom in a flavor and have the remarkable attribute of sticking to each other like Lego Blocks. They are prefabricated building blocks. Biology uses atoms and soon, so shall we.

This is the shot gun marriage of chemistry and engineering called molecular nanotechnology (MNT). If we can place atoms on a structure under construction individually, this opens up a realm of super large molecules not found in nature, designed by engineers (adhering to the normal laws of chemistry). Structures, big structures, or microscopic structures and machines could be made of materials with unusual physical properties like carbon in its ultra-strong form, diamond. Ideally, programed “nanites”, machines with atomic sized components could take any source of required atoms and energy, make copies of themselves, then “grow” things without traditional manufacturing techniques and without byproducts. No waste and no side reactions means this tech would be super green. Nanites could be programed and unleashed to clean up existing industrial pollution (and will within two decades).

Nanotech’s goal is a device called a “Universal Assembler” that takes raw atoms in one side and delivers consumer goods out the other. It could also make a copy of itself you could give to a friend. What happens to the economy if demand for just about everything is foiled by a household appliance… is a good question.

Scientists are on the verge of manipulating atoms and molecules with the same precision as life. Research in molecular biology, chemistry, and scanning probe microscopy (scopes that can see and move atoms) are laying the foundations for a technology of self-replicating molecular machines by developing positional controlled chemical synthesis. By building objects on such a fine scale, we could make extraordinary things from ordinary matter. If the fields of molecular biology (which some call wet nano), chemistry and solid state physics were all to shut down today and make no more advances, chip manufactures in their quest for evermore speed would develop MNT single handed. They have the incentive.

Society is in for a spin as we head for a novel form of economics in an age of self replicating machinery, where the design of an object cost about the same as today yet production cost is nearly zilch. All first wave manufacturing will be obsolete. No cobblers, just shoe designers, no autoworkers, just car designers, no feed lots, just chefs. Ask yourself, what will be of value? What is money in a nano age? How will politics and war change when we don’t have traditional resources to fight over?

As an example of this new economic era, here is a response to an inquire from a gentleman with the Natural Resources Canada / Resources naturelles Canada:

Subject: hydrocarbon reservoir characterization “I am curious if anybody knows of companies or research organizations that work in the field of hydrocarbon reservoir characterization using nanotechnology?”

Allow me to provide a perspective I think you’ll find very relevant to your industry. I have good news and bad… Perhaps the good news (although disruptive) is so good, you won’t mind the bad.

Nanotechnology, building things atom by atom, is not yet available. This is the level of technology you seek. However, the first “nanotech company” formed to develop this ability is up and running (Zyvex, see: http://www.zyvex.com/).

With reasonably mature Drexlerian nanotechnology (see “what is nanotechnology”, www.nanozine.com) not only could you flood large numbers of nano-robots into a reservoir in order to collect information that characterizes the reservoir conditions, but also program nanites to build capillary collection systems out of the carbon in the oil (diamond), capable of extracting extremely high percentages of a reserve (probably 95-98%). Such nanites could easily be programed and engineered by modifying medical nanites in design right now by Robert A. Freitas Jr. (rfeitas@calweb.com). Also, with the “novel economics” of self replicating machinery that “Drextech” represents, 10^15 oil field nanites would cost only slightly more than developing and building the first.

Now the bad news. Nobody will (probably) ever build them, because the same effort could be used to engineer nanites that deposit molecularly thin solar cells on road and highway surfaces (then add a layer of tough diamond). Canadian roads could supply the world’s energy needs several times over.

Nanotechnology is a truly revolutionary. Yes, this does mean the obsolescence of oil as an energy source. Carbon sources, (most important nano building blocks) are numerous…. the atmosphere and limestone deposits for instance.

The oil business is not alone in the disruptive transition to this most powerful technology. Virtually all manufacturing processes will be obsolete, as will mining and logging. Nanotechnology will allow the syntheses of wood on a molecular level… including smell, with process that exclude our contemporary concept of labor (just extrudes out of the box, pre-sized). The same synthesized wood could be laced with carbon nanotubes (Buckytubes, Fullerenes). Such a “composite” would exhibit structural properties exceeding steel. Diamond will become as common as lumps of coal. Gold could actually be mined from seawater.

As extraordinary as this sounds, a little research on the web (you may have already) will tell the same story. While you’re researching, you’ll no doubt also discover the extremely positive benefits of nanotechnology. We are on the threshold of material opulence and greatly enhanced physical health. You will find these and other subjects of significance on the Magazine’s webpage such as, “What will be monetarily viable industries in the nano-era?” and the all important question, “What’s the time frame?”

Best in the future (it’s going to be a very different place), Bill.

Stop. Who thought all this up? Where did this outrage originate? Dr. K. Eric Drexler is the father of nanotechnology, seeing the pattern of the posable in his studies of biology, computer science, etc. while still a student at MIT in the late seventies. He realized what a different word we could have, if we could build with individual atoms like nature. Drexler (and Dr. Chris Peterson) fought one heck of an uphill battle throughout the ’80s and ’90s for acceptance of these radical ideas by the scientific community. Now, things have changed. History will read, Newton, Einstein, Drexler.

Yes, we are on the threshold of material opulence and greatly enhanced physical health. However, in a bed of roses, one still must avoid the thorns. Like all technology, nano can be used for good or not so good (serious understatement) and could cause considerable panic to the under informed during the transition. As post-nano international relations thinker Tom McCarthy points out, if China’s perception of its ancient rival India’s advanced software and technology lead… might produce nanotechnology first, this could prompt China to nuke Indian research centers before India could strike with nanoweapons. Now conceder this; unlike nuclear, nano is a desktop industry… and one sufficiently advanced disgruntled hack working in a garage could program a self replicating nanite to kill all bovine on the planet, or all people with brown eyes, or indeed, all DNA based life…

But wait, check this small example of the wonders possible building things with atomic precision.

Building on the atomic scale, mechanical computers with the power of a mainframe could be manufactured so small, that several hundred would fit inside the space of a biological cell. (http://www.asiapac.com/EnginesOfCreation/)

If you combined microscopic motors, gears, levers, bearing, plates, sensors, power and communication cables etc., with powerful microscopic computers, you have the makings of a new class of materials. Smart materials.

Programmable smart materials could shape-shift into just about any desired object. A house made of smart materials would be quite useful and interesting. Imagine a wall changing color at your command, or commanding the appearance of a window where there was none, drapes of any style listed in the smart materials software or from some source on the Internet. This is all purely mechanical and can be done today, although with much larger parts, resulting in a coarser effect (and at great expense!).

A fabulous type of smart material was invented by Rutgers University’s Dr. J. Storrs Hall, computer scientist, moderator of the sci.nanotech news group and seriously creative nanothinker. He calls his brainchild, Utility Fog. (http://nanotech.rutgers.edu/nanotech/Ufog.html)

This “intelligent” polymorphic (shape changing) substance consists of a mass of tiny identical nanoengineered robots. Each utility foglet robot is mostly telescoping arms 5 to 10 millionths of a meter long with a central globular body 1 or 2 millionths wide housing motors, a battery and one of those powerful nanocomputers. Dr. Hall designed the ‘bot with 12 arms that can be waved back and forth and grip the ends of other robot arms, making power and communication connections. 12 arms, so some could be free briefly when changing neighbors and still be connected to the mass. Also, such an octet truss structure (invented by Buckminster Fuller) remains rigid even if all the arms are connected to the bodies by simple hinges This avoids a more complicated attachment assembly.

Each robot body is small compared to its arm spread, and the arms are relatively thin. This results in the foglet taking up only 2 or 3 % of the space in a volume they fill, the balance is left for air and passing light. A room filled with Utility Fog would be fairly transparent, larger volumes would become cloudy at a distance.

Much larger foglets can be built with today’s technology however, the expense of producing enough to do anything useful would be most prohibitive. Filling an average house with the microscopic variety would require trillions of foglets, so the whole concept depends on the economics of automatic nano-assembly to be remotely affordable.

Now for the fun part. With all this computing power, these puppies can be programmed with a wide spectrum of behaviors that mimic materials of different mass, motion, appearances and functions. Each Foglet can sense the force along each and every arm, and react according to the magnitude and relation of those forces.

In the words of Dr. Hall in a recent article in NanoTechnology Magazine, “If the program says, extend when the force is trying to stretch, retract when it is trying to compress, you have a soft material. If it says, resist any change up to a certain force, then let go, you have a hard but brittle material. If the programming says, maintain a constant total among the extension of all arms, but otherwise do whatever the forces would indicate; and when a particular arm gets to the end of its envelope, let go, and look for another arm coming into reach to grab; you have a liquid. If you allow the sum of the arm extensions to vary with the sum of the forces on the arms, you have something that approximates a gas within a certain pressure range. Note that because the Foglets can use their own power to move or resist moving, the apparent density and viscosity of the fluid can be anything from molasses to near vacuum.”

Further Dr. Hall states, “Run a distributed program that at a specified time, changes a certain volume from running water to running wood. A solid object would seem to appear in the midst of fluid. It can just as easily disappear. Now fill your entire house with the stuff, running air in background mode. Have an operating system that has a library of programs for simulating any object you may care to; by giving the proper command you can cause any object to appear anywhere at any time. You could carry a remote control, which might happen to be shaped like a wand with a star on the end…

More ambitiously, since you’re embedded in the Fog, it can sense every detail of your bodily position. It forms a “whole-body dataglove”, and you can control it with extremely subtle gestures. At the ultimate extreme, the Foglets can carry various special sensors ranging from simple electrodes with voltmeters to SQIDs and form an extremely high bandwidth polygraph. With proper programming the Fog would almost be able to read your mind. This combination of extreme reactivity to control and virtually limitless creative and operational ability suggest a comparison with the Krell machine in “Forbidden Planet”.

Hall offers the average person with a bucket of Utility Fog a great stage career in Vegas with these observations. “Thus, here’s a short list of the powers you’d have or appear to have if embedded in Fog:

Creation: causing objects to appear and disappear on command. Levitation: causing objects to hover and fly around. Manipulation: causing forces (squeezing, hitting, pulling) on objects (real ones) at a distance. This includes a distance of inches; bend steel bars (real ones) like Superman. Teleportation: nearly any combination of telepresence and virtual reality between Fog-filled locations. Shape-shifting: Want to be a mouse? the Fog around you simulates very large feet, baseboards, etc., while your telepresence drives a mouse-sized fog program. Want to be the Statue of Liberty … ?”