Смекни!
smekni.com

Nano Technology Essay Research Paper Nanotechnlogy18 seems (стр. 1 из 2)

Nano Technology Essay, Research Paper

Nanotechnlogy

18 seems to be the magic number in today’s manufacturing process. Intel and AMD both boast their upgraded production, and note that it will lead to ever increasing speeds and capabilities. Quietly, however, there is a growing consensus among the scientific community that silicon based-chips are on their way out. Tiny, molecular computers are becoming more and more feasible, and may do to silicon what transistors did to vacuum tubes.

Across the world, universities and government institutions are making advances in nano-technology that could shatter today’s concept of electronics. As far as speed and memory are concerned, the results may be incomprehensible to consumers and businesses alike.

Consumers are routinely fooled by the false-security of a megahertz rating. Most buyers think an extra 50Mhz is appealing, despite a $75-$100 increase on the price tag. True, a 550 Pentium 3 has a 10% speed advantage over a 500 Pentium 3, but it realistically only performs a 5% increase in most applications. Consumers need to understand that speed and performance are mutually exclusive. An extra 100 bucks is hardly worth the 10-12-millisecond improvement when launching Microsoft Word. Still, an 800 Athlon this Quarter, a 900 next Quarter, seems to signal the dominance of silicon-based computers for some time. Most computer-chip manufacturers estimate that they will have plenty of business until 2014 when they expect to reach their theoretical limit in silicon-based computers: .10 microns. The translation meaning processors and other components would be built at 100-billionths of a meter, or 100 nanometers- 100 nanometers being the distance between each transistor.

Now, realize that with nanotechnology we could shrink components down to .001 microns- one nanometer. Chips would be exponentially faster, more efficient, and powerful than anything on the drawing board today. While some labs, like the ones at UCLA, IBM, and HP are well publicized, many are working under top-secret conditions and have supposedly made several prototypes of working nanotechnology. One such rumor is of a molecular device capable of functioning as RAM in a nano-computer.

The impact would be tremendous on the scientific and commercial communities. A near-term application in 2-5 years might be a DVD-like movie stored in a space half the size of today’s semiconductor chips.

If nanotechnology were to exist today, it would make every CEO in the computer chip industry cringe at the costs they have endured to produce the latest and greatest chips. Current chips are made in multi-billion dollar fabrication plants (fabs) that use light waves to etch layers of circuitry onto a silicon wafer. It is an enormously expensive process, mostly because of the conditions in which the “clean rooms” must be maintained. Any dust or particles in the room would contaminate the chips produced. Nano-produced computer components would not require any such plant. While the current trend provides that with the advances in computer technology, the more ‘finicky’ they are to produce. Molecular computers would have their components produced in vast numbers without such hindrances. One such idea involves massive “self-assembling” vats that produce the chips using chemical reactions at a fraction of current costs.

The idea behind nanotechnology is in reproducing what nature already does: produce things atom-by-atom, molecule-by-molecule. Not only would this allow humans to control properties like color, texture, and density, but also it might be possible to create things that repair themselves when damage occurs. Self-Assembly seems to be a key concept in the nanotechnology movement, which was revolutionized only ten or so years ago.

While the idea is not new, advanced microscopes and computer software have brought it from theories and crazy ideas to feasibility. For instance, in 1990 IBM brought nanotechnology to the headlines when it spelled IBM with 35 atoms of the element xenon.

Nanotechnology carries with it the idea of building anything imaginable, from a diamond coat to paint over your car (to prevent scratches), to diagnosing illnesses from one droplet of blood.

In 1998, the White House Science and Technology Council created the Interagency Working Group charged with developing ideas for future nanotechnology in 10-20 years from now. They have drawn up ideas about curing cancers and legions on the body with nanoparticles traveling through the body to fix it from the inside. Artificial limbs could be made up in batches and its prospective owner would personalize prosthetic limbs for use. Of course, memory and storage would be millions, if not billions, of times faster and larger.

Unfortunately, we are still in the blueprint and laboratory stage. An Interagency Working Group report noted that nanotechnology today is where transistors were in the 1950’s. Problems persist, not with the application of such technology, but with the execution of it.

No one, for instance, has discovered a way to link all the nano-particles, which process data as 1’s and 0’s together. And it was only recently that UCLA was able to get the components to repeatedly work. Basically, it could only work with data once, and could not switch back and forth between the 1’s and 0’s. As with any other technology, the bumps in the road and problems to come will meet with new questions and innovative solutions.

But the most exiting part of the whole nanocomputer idea is that it will require radically different architecture that would look alien to any computer engineer working in today’s laboratories. At the Massachusetts Institute of Technology, they are working on architectures that resemble their biological counterparts in mammal brains. The idea is to assemble trillions of circuits and then map out and identify the good and bad pathways- much like the human brain. A simplified comparison might be declaring faulty sectors on hard-drives off limits for reading/writing. Possibly, that could mean every nanocomputer would be unique and personalized-much like the human brain. The ideas are innovative and most go out on a tangent from current doctrine. A program manager at the Pentagon’s Advanced Research Projects Agency noted, “We don’t want to be standing on the shoulders of silicon.”

Recently, IBM showed how the circuitry of atomic scale computing could be achieved. Called a “quantum image” the technique demonstrates that it could one day be technologically practical to make a nano-circuit. Heat would be virtually eliminated and batteries that never die out might power the computers. The IBM researchers found that they could project the image of one cobalt atom (about 20 nanometers) onto a second point within the same area. This experiment proves that it is possible to read and write 1’s and 0’s without the benefit of wiring. The research is the benefactor of the increasing wealth of IBM and thus its augmented Research and Development budget.

All this comes as the Clinton Administration, along with bipartisan support in Congress, proposes an increase from $260 million to $487 million dollars in nanotechnology research. The increase will mostly benefit University research and joint ventures like the UCLA-Hewlett Packard alliance. Federal agencies like the National Science Foundation, the Department of Defense, the Energy Department, NASA, the National Institute of Health and the Commerce Department will all have earmarked funding for nanotechnology development.

Will the new millennium herald us into a new era of computing and personal electronics? Yes. Will we see nanotechnology tomorrow? No. In 10-20 years, however, supercomputers might be the size of calculators and consumer computers may fit on your watch. No one can predict the new abilities we will have or the upcoming products that will fill our closets after we don’t want to use them anymore. In the end, the only real question that remains is: What kind of games will run on these bad boys?

What objects we commonly know should disappear because of nanotechnology?

People living before and through the transition – at first and because of prejudice for things we know and because people have not imagined the variety and super rich realm of new possibilities — the objects failure to everyday life will be sought by the public and reproduced by assembler technology. People will still want cotton beach towels, although the cotton farmer will no longer be needed when fibers can be manufactured atom by atom from carbon in the air or from limestone. Lots of familiar items will appear “traditional” on the outside, yet posses a multitude of new tricks and functionality made possible with MNT — cars with Utility Fog crash protection for instance. Of course, MNT Smart Materials can look like anything, yet perform “magic”.

Now, the next generation and generations to follow, born into the age of nanotechnology will a “clean slate” without concrete historical prejudices, will design objects and lifestyles that take advantage of the new wealth of possibilities and I should expect design objects and “environments” that would appear bizarrely alien, extraordinarily novel to even the most advanced nano tinker today. The general concept is familiar in science fiction, only now we have a clear engineering path to make real, the stunning constructs of uninhibited imaginations and those yet to be born.

The wild card to consider and the reason that frankly, it is ludicrous to project past a few decades — or more than say, one generation or so, is the effect nanotechnology will have on intelligence enhancement efforts. Once these efforts are even mildly successful, the the “experimenters” will spend much of their time amplifying intelligence enhancement efforts and the valve controlling what is imaginable and what can be engineered opens at a geometric rate. By definition, what can and will be is unimaginable now, and I’m not even addressing the issue of machine intelligence in the equation. The curve approaches vertical.

What new objects should appear because of nanotechnology?

Perhaps the big story — with mature nanotechnology, any object can morph into any other imaginable object… truly a concept requiring personal exposure to fully understand the significance and possibilities, but to get a grip on the idea, consider this:

The age of digital matter — multi-purpose, programmable machines, change the software, and something completely different happens.

A simple can opener or a complex asphalt paver are both, single purpose machines. Ask them to clean your floor or build a radio tower and they “stare” back blankly. A computer is different, it is a multi purpose machine — one machine that can do unlimited tasks by changing software… but only in the world of bits and information.

I’m involved with a company developing Fractal Shape Shifting Robots. Fractal Robots are programmable machines that can do unlimited tasks in the physical world, the world of matter. Load the right software and the same “machines” can take out the garbage, paint your car, or construct an office building and later, wash that building’s windows. In large groups, these devices exhibit what may be termed as macro (hold in your hand) sized “nanobots “, possessing AND performing many of the desirable features of mature nanomachines (as described in Drexler’s, Engines of Creation, Unbounding the Future, Nanosystems, etc.). This is the beginning of “Digital Matter”.

These Robots look like “Rubic’s Cubes” that can “slide” over each other on command, changing and moving in any overall shape desired for a particular task. These cubes communicate with each other and share power through simple internal induction coils, have batteries, a small computer and various kinds of internal magnetic and electric inductive motors (depending on size) used to move over other cubes (details here). When sufficiently miniaturized (below 0.1mm) and fabricated using photolithography methods, cubes can also be programmed to assemble other cubes of smaller or larger size. This “self-assembly” is an important feature that will drop cost dramatically.

The point is — if you have enough of the cubes of small enough dimension, they can slide over each other, or “morph” into any object with just about any function, one can imagine and program for such behavior. Cubes of sufficiently miniaturized size could be programed to behave like the “T-2″ Terminator Robot in the Arnold Schwartznegger movie, or a lawn chair… Just about any animate or inanimate object.

Fractal Shape Shifting Robots have been in prototype for the last two years and I rather expect this form of “digital matter” to hit the commercial seen very soon. In the near future, if you gaze out your window and see something vaguely resembling an amoeba constructing an office building, you’ll know what “IT” is.

This is not to say individual purpose objects will not be desirable… Back to cotton — although Cubes could mimic the exact appearance of a fuzzy down comforter (a blanket), if made out of cubes, it would be heavy and not have the same thermal properties. Although through a heroic engineering effort, such a “blanket” could be made to insulate and pipe gasses like a comforter and even “levitate” slightly to mimic the weight and mass, why bother when the real thing can be manufactured atom by atom, on site, at about a meter a second (depending on thermal considerations).

Also, “single purpose” components of larger machines will be built to take advantage of fantastic structural properties of diamondoid-Buckytube composites for such things as thin, super strong aircraft parts. Today, using the theoretical properties of such materials, we can design an efficient, quiet, super safe personal vertical takeoff airocar. This vehicle of science fiction is probably science future.

Which industries should disappear because of nano-technology?

Everything — but software, everything will run on software, and general engineering, as it relates to this new power over matter… and the entertainment industry. Unfortunately, there will still be insurance salesmen and lawyers, although not in my solar orbiting city state. If as Drexler suggest, we can pave streets with self assembling solar cells, I would tend to avoid energy stocks. Mature nanites could mine any material from the earth, landfills or asteroids at very low cost and in great abundance. The mineral business is about to change. Traditional manufacturing will not be able to compete with assembler technology and what happens to all those jobs and the financial markets is a big, big issue that needs to be addressed now. I intend to start or expand organizations addressing these issues and cover progress in the pages of NanoTechnology Magazine.

We will have a lot of obsolete mental baggage and programming to throw out of our heads… Traditional pursuits of money will need to be reevaluated when a personal assembler can manufacture a fleet of Porche, that run circles around todays models. As Drexler so intuitively points out, the best thing to do, is to get the whole world’s society educated and understanding what will and can happen with this technology. This will help people make the transition and keep mental, and financial meltdowns to a minimum.

How does the technology evolution of the last thirty years shape the future of your field?

Never before has 30 years been such a long, long time, technologically. I am speaking of course, of the ever increasing curve of advancement in all fields of tech and science.

Imagine a world without cell phones, wireless phones, beepers, fax and answering machines, video tape players, cam corders, cable TV, CD audio, Sony Walkmans, Microwave ovens, Intendo, personal computers and the World Wide Web. Back then, few people had the luxury of a remote control for their tube! I tell ya… it was a dismal dark age of hand operated analog devices. We should fall to the ground in pity for our parents and grandparents and ourselves for the drudgery of just surviving grocery checkouts with no laser readers.

Out side of these extraordinary advances in computer tech, the rise of biotech and genetics has conspired to make people think small. That’s where the power is. Did you see that IBM logo spell out with 35 individual atoms back in the late ‘80? That was done with a new microscope that can not only image individual atoms, but move them around as well. This one act proved definitively that atoms can be manipulated with precision by human beings.

Yes, technology is moving fast! However, something bizarre is on the horizon… and I mean truly bizarre. “Something wonderful.” (Clark)

If you found a genie in a bottle offering the proverbial three wishes, what would you wish for? What? Material wealth? End world hunger? A space condo orbiting the rings of Saturn? Intelligence enhancement? How about the truly grand prize, the ancient dream of (most) all humanity… youth and open ended life span?

If I found a green gen, I would state… only one wish. Something called nanotechnology. Let me explain…

Computers reproduce information at almost no cost. A push is well underway to invent devices that manufacture at almost no cost, by treating atoms like computers treat bits of information. This would allow automatic construction of consumer goods with out traditional labor, like a Xerox machine produces unlimited copies without a secretary retyping the original information.