Смекни!
smekni.com

Основные понятия синергетики (стр. 4 из 4)

I. Выживание. Клетка остается занятой на следующем ходу, если на предыдущем были заняты две, или три соседние с ней клетки.

2. Гибель. Клетка становится свободной на следующем ходу, если на предыдущем было занято более трех или менее двух соседних клеток (в первом случае клетка «погибает» из-за перенаселения, во втором - из- за чрезмерной изоляции).

3. Рождение. Свободная клетка становится занятой на следующем ходу, если на предыдущем были заняты три и только три соседние клетки.

Кажущаяся простота правил Конуэя обманчива: как и простые динамические системы, доска с расставленными на ней фишками может перейти в весьма сложные режимы, имитирующие процессы гибели (полное уничтожение всех расставленных в начальной позиции фишек), неограниченный рост, устойчивое стационарное состояние (система с определенной периодичностью в пространстве), периодические по времени осцилляции.

10. Поиски универсальной модели

Сложность поведения простых моделей и неисчерпаемое разнообразие моделируемых объектов наводят на мысль о поиске некоего универсального класса моделей, которые могли бы воспроизводить требуемый тип поведения любой системы.

Рассмотрим, например, систему уравнений химической кинетики, описывающую редкую ситуацию: досконально известный механизм m-стадийной реакции (m - число элементарных актов), в которой принимает участие п веществ. Алгоритм выписывания динамической системы по схеме реакции однозначно определен. В таких системах «химического типа» удалось установить существование довольно сложных режимов (например, каталитический триггер или каталитический осциллятор). В то же время известно, что далеко не всякую динамическую систему с полиномиальной правой частью можно интерпретировать как описывающую некую гипотетическую химическую реакцию: некоторые концентрации в случае произвольно заданной системы могут становиться отрицательными. Возникает вопрос: всякую ли динамическую систему с полиномиальной правой частью можно промоделировать системой типа химической кинетики? Ответ (положительный) был получен М. Д. Корзухиным, доказавшим теорему об асимптотической воспроизводимости любого режима, осуществимого в системах с полиномиальной правой частью, системами типа химической кинетики (быть может, с большим числом «резервуарных» переменных, концентрации которых в ходе реакции считаются неизменными).

синергетика наука структура хаос


11. Заключение

Синергетика интересна не только своими математическими результатами, открытием удивительного мира эволюционирующих и самоорганизующихся структур, но и своими разветвленными приложениями. Можно надеяться, что синергетика способна нам помочь и в понимании перехода от неживого к живому, биологической эволюции, психики человека, социальных организаций, течения человеческой истории. Синергетика устанавливает мостики между «мертвой» и живой природой, между целеподобностью поведения природных систем и разумностью человека, между процессом рождения нового в природе, творчеством природы и креативностью человека. В определенных классах неорганических систем ведется поиск живого, элементов самодостраивания, регенерации, морфогенеза, в живом — поиск свойств неживого, того, что обще ему с царством неорганической природы, что уже переформировано в неживом, предано в законах эволюции Вселенной.

Речь идет не просто о внешнем сходстве или метафорическом сравнении структурообразований мертвой и живой природы, яркие формы выражения которого доступны перу писателя. Речь даже не об аналогии, а об изоморфизме живого и неживого, об общности образцов эволюции и эволюционных структурообразований, о выявлении неких универсальных закономерностей эволюции и самоорганизации мира. С помощью синергетики осуществляется выход на наиболее абстрактный и глубокий уровень сравнения, вырабатываются некие общие модели, устанавливаются закономерности трансдисциплинарного типа.

По сути дела, строится своеобразный параллельный мир, мир математических моделей. При изучении этого мира обнаруживаются парадоксальные свойства нелинейных процессов, а именно: локализация процессов в открытых диссипативиых средах (образование самоподдерживающихся структур в сплошных средах), спектры структур–аттракторов, как наиболее устойчивые образования, к которым эволюционируют процессы в такого рода средах, способы резонансного возбуждения структур–аттракторов, различные типы сверхбыстрого развития процессов, так называемые режимы с обострением. Далее осуществляется попытка как бы «примерить» этот, в определенной мере искусственный, мир математических моделей к реальному миру, «опрокинуть» его на реальный мир, идентифицировать открываемые свойства нелинейных процессов с известными, но порой труднообъяснимыми свойствами окружающего нас природного мира. И в ряде случаев наблюдаются совпадения, открываются возможности для перетолкования тех явлений организации и эволюции, которые стали нам привычными.

Предлагаемые модельные представления, разумеется, не претендуют на то, чтобы заменить существующие физические и химические модели, в том числе сложившиеся квантово–механические представления. Но сама возможность по–другому взглянуть на реальность, на как будто бы уже на века утвердившиеся представления об атомах, Вселенной, физических, химических и биологических структурах, не может быть оставлена без внимания. На относительно простых математических моделях делаются попытки понять принципы эволюции и самоорганизации сложного.

В отличие от констатации принципиальных различий между живой и неживой природой синергетика позволяет увидеть те общие принципы, которые соединяют то и другое.


12. ЛИТЕРАТУРА

1. Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г., Самарский А.А. Нестационарные структуры и диффузионный хаос. М.: Наука, 1992.

2. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М.: Наука. 1997.

3. Лоскутов А.Ю.,Михайлов А.С.. Введение в синергетику. — М. Наука. 1990.

4. Малинецкий Г.Г. Хаос, структуры, вычислительный эксперимент. М.: Наука, 1997.

5. Мун Ф. Хаотические колебания. — М.: Мир. 1990.

6. Новое в синергетике. Загадки мира неравновесных структур. М.: Наука, 1996.

7. Федер Е. Фракталы. — М., Мир, 1991.

8. Хакен Г. Синергетика. М.: Мир, 1980.