N-концевая последовательность NOS подвергается миристоилированию и пальмитоилированию, что определяет ее субклеточную локализацию и косвенно ее активность. Так, для фиксации эндотелиальной NOS в плазматической мембране необходимо ацилирование N-терминальных остатков глицина в молекулах фермента с образованием амидных связей [3].
Нейрональная изоформа NOS связана с мембраной за счет взаимодействия N-концевого PDZ-фрагмента с белками типа PSD-95, PSD-93 и дистрофинсвязанным белком – синтрофином [3].
В отличие от конститутивных изоформ, индуцибельная NOS, не связанная с мембранными белками, является цитозольным ферментом [3]. Однако сравнительно недавно в митохондриях была выявлена конститутивно экспрессируемая NO-синтаза. По основным характеристикам митохондриальная NOSсходна с макрофагальной [16]. Сравнивая скорости продукции NO интактными митохондриями, митохондриальным гомогенатом и субмитохондриальными частицами (1.4, 4.9 и 7.1 нмоль/мин на мг белка соответственно) можно сделать вывод, что mtNOS фиксирована на внутренней мембране митохондрий, тогда как iNOS является цитозольным ферментом. Вопрос о том, что представляет собой митохондриальная NOS – отдельную изоформу фермента или же модифицированную во время трансляции или после нее индуцибельную NOS (как это имеет место в скелетных мышцах для нейрональной) – остается открытым [3].
Таблица 1. Физико-химические характеристики NO-синтаз человека[1].
Характеристика | Изоформа NO-синтазы | ||
Нейрональная | Индуцируемая | Эндотелиальная | |
Источник выделения белкаМолекулярная массаНативная структураАминокислотная длинаЛокализация в клеткеЛокализация в геноме | Нейроны мозга160кДаДимер1433ЦитозольХромосома 12 | Макрофаги130кДаДимер1153ЦитозольХромосома 17 | Эндотелий сосудов133 кДаНет данных1203Мембрана, цитозольХромосома 7 |
Регуляция активности NOS
В процессе образования NOфлавин редуктазы принимает электроны с НАДФ*Н и переносит их на железо гемовой группы. В результате этой реакции образуется активированная молекула О2, необходимая для синтеза NO. В эндотелиальной NOS и нейрональной NOS перенос электронов с флавина на гемм инициируется связыванием СаМ соответствующим сайтом фермента., т.е. СаМ участвует в регуляции продукции NO этими конститутивными NOS [3].
Рис.3. Схематическое представление синтеза NO и регуляции работы NO-синтазы[2].
Считается, что механизм активирующего действия СаМ на нейрональную NOS обусловлен изменением конформации редуктазного домена при связывании этого белка, что, в свою очередь, приводит к повышению скорости переноса электронов как на флавины, так и на конечные акцепторы электронов. Показано, что при этом СаМ активирует выраженные, происходят и при связывании СаМ эндотелиальной формой NOS. В отличие от нейрональной и эндотелиальной NOS, индуцибельная связывает редуктазный домен независимо от домена оксигеназы. Такие же изменения, но менее СаМ практически необратимо, что проявляется длительной продукцией NO этим ферментом [3].
Таким образом, нейрональная и эндотелиальная NOS неактивны при нормальном уровне Са2+ в клетке и начинают синтезировать NO в ответ на увеличение концентрации кальция в цитозоле, вызывающее связывание СаМ этими конститутивными ферментами. Длительное повышение уровня кальция приводит к постоянной продукции NO. Напротив, продукция индуцибельной формой NOS не зависит от уровня внутриклеточного кальция и при нормальном его уровне лимитирована только количеством фермента и субстрата и наличием кофакторов [3].
Один из механизмов регуляции продукции NO – фосфорилирование молекулы NO-синтазы. Фосфорилирование конститутивных NOS цАМФ-зависмой протеинкиназой, протеинкиназой С, цГМФ-зависимой протеинкиназой, Са2+-кальмодулинзависимой протеинкиназой ведет к снижению активности этих ферментов. С другой стороны, протеинфосфатаза-кальцийнейрин может дефосфорилировать NOS, вызывая тем самым повышение ее каталитической активности [3].
Кроме того, для NO-синтаз характерна регуляция по механизму отрицательной обратной связи. При этом к действию оксида азота, выступающего в качестве неконкурентного ингибитора, более чувствительны конститутивные изоформы, снижение активности, которых происходит за счет связывания NO с атомом железа гемовой группы ферментов [11]. Ингибирующее действие NO на индуцибельную NOS, возможно, связано с ограничением димеризации молекулы фермента [3].
Считается, что NO может осуществлять ретроградную регуляцию не только путем взаимодействия с гемом фермента, но и через ингибирование транскрипции мРНК NO-синтазы (либо непосредственно, либо за счет угнетения активации фактора транскрипции NF-kB) [3] .
Рис.4. Стимуляция и ингибиция индуцибельной NO-синтазы [8].
Активация рецепторов гепатоцитов, клеток моноцитарно-макрофагальной системы и некоторых клеток крови цитокинами (Cyt) и липосахаридами (LPS), под влиянием которых происходит индукция индуцибельной синтазы окиси азота, синтезирующей NO из L-аргинина. Блокада (ХХ) i-NOS глюкокортикоидами или другими блокаторами ее активности. Образовавшийся NO диффундирует в межклеточное пространство [8],[9].
Таблица 2. Синтетические и природные агенты, модулирующие активность NO-синтаз [1].
Типы модулятора | Изоформа фермента | ||
Noc-I | Noc-II | Noc-III | |
Активаторы/индукторыИнгибиторы | Глутамат, N-метил-D-аспартатL-тиоцитруллин, 7-нитроиндазол, нитроаргинин | Цис-платина, интерлейкин 1-β, интерферон-γ, липополисахарид, фактор некроза опухоли -α и –β, γ-излучениеN-(3-(аминометил)-бензил)-ацетамидин, N6-(1-иминоэтил)-бензил)-ацетамидин; аминогуанидин, дексаметазон, ингибиторы сериновых протеаз, интерлейкин-4 и -10; L-NMMA; простагландин Е2, простациклин; N6-(1-иминоэтил)-L-лизин; 3-гидроксиантраниловая кислота; метотрексат | Субстанция Р, АДФ, сдвиговое напряжение и пульсации давления крови, тромбин, гипомагнеземия, гистамин, Са2+-ионофоры, лейкотриены, олеиновая кислота, фактор активации тромбоцитов, аденозин, АТФ, ацетилхлин, брадикинин, серотонин; хлористый калий, эндотелин.Нитроимидоорнитин; иминоэтилорнитин, L-НАМЭ; АДМА |
Неферментативное образование оксида азота
Для биологических тканей помимо генерации оксида азота в ходе ферментативных реакций с участием NOS обнаружена возможность превращения нитрит-аниона в NO [7]. Этот процесс происходит в условиях ацидоза и при наличии восстановленных форм гемсодеращих белков, что характерно для такого патологического состояния как ишемия [3].
Так, образование оксида азота из нитрита может происходить в соответствии со следующей последовательностью реакций:
NO-2 + H + HNO2 HNO2 {NOOH} {NOOH} + NO-2 N2O3 + OH- N2O3 NO + NO2Кроме того, ионы NO-2 способны восстанавливаться до оксида азота в ходе окислительно-восстановительных реакций, акцептируя электроны с дезокси-форм гемсодержащих белков. Так, при взаимодействии NO с восстановленным гемоглобином происходит окисление Hb2+ до metHb и восстановление ионов NO-2 до NO:
Hb2+ + NO-2 + 2H + metHb + NO + H2OНитритредуктазная активность также показана для миоглобина, цитохром-с-оксидазы и цитохрома Р-450.
Факт образования NO в биологических тканях из нитрит-аниона позволил предположить возможность существования механизма циклического превращения оксида азота в организме:
L-Arg NO NO-2/NO-3 NOДанное положение нашло отражение в концепции цикла оксида азота в организме млекопитающих. При этом NO-синтазная компонента обеспечивает эндогенный синтез NO, NO-2, NO-3 в присутствии кислорода. В условиях гипоксии или функциональной нагрузки, при которой осуществляется активное потребление кислорода, NO-синтазный механизм ингибируется [10].
В то же время дефицит кислорода приводит к активации нитритредуктазной компоненты цикла. Считается, что циклизация метаболических путей обеспечивает высокую степень упорядоченности и связанности систем биохимических реакций. Таким образом, механизм циклических превращений для NO и других высокореакционных азотсодержащих соединений гарантирует не только их эффективную переработку, но и достаточно быстрое выведение путем превращения в менее активные вещества, например ионы NO-2 и NO-3[3].
Методы определения оксида азота
Описанные в литературе методы определения NO можно условно разделить на прямые (таблица 2) и косвенные (таблица 3). В число первых входят те, с помощью которых осуществляется непосредственная регистрация NO, либо его комплексов. Прежде всего, это метод электронного парамагнитного резонанса (ЭПР) как средство изучения молекул с неспаренным электроном. Предложено использовать в качестве индикаторов NO регистрируемые методом ЭПР нитрозильные железосодержащие комплексы, устойчивые в биологически активных средах [1].