Пневмококи а-форми при зараженні ними мишей викликають запалення легенів, від якого миші гинуть. Б-форма для них нешкідлива.
У 1928 році англійський бактеріолог Ф.Гріффітс заражав мишей сумішшю, що складається з убитих нагріванням пневмококів а-форми і живих пневмококів Б- форми. Учений передбачав, що миші не захворіють. Але всупереч чеканням піддослідні тварини загинули. Ф. Гріффітсу удалося виділити з тканин загиблих мишей пневмококи. Всі вони виявилися капсулірованнимі, тобто А- форми. Отже, убита форма якимсь чином передавала свої властивості живим клітинам б-форми. Але як?
Від рішення цього питання залежало багато що, оскільки, встановивши речовину, що передає спадкову ознаку, – утворення капсули, можна було отримати потрібну відповідь. Проте зробити це не виходило досить довго. Лише через 16 років після дослідів Ф. Гріффітса, в 1944 році, американський учений А. Евері із співробітниками, поставивши ряд чітких експериментів, зумів з повним обгрунтуванням довести, що полісахарид і білок не мають жодного відношення до передачі спадкових властивостей пневмокока а-форми.
В процесі цих експериментів за допомогою спеціального ферменту розчинили полісахаридну капсулу убитих пневмококів а-форми і перевірили, чи продовжують залишки клітки форми А передавати спадкову інформацію клітинам форми Б. Виявилось, що продовжують. Зрозуміло, що полісахарид як джерело генетичної інформації відпадає.
Далі вчені за допомогою інших ферментів видалили із залишків пневмококів А білки і знову перевірили їх дію. Передача спадкової інформації від А до Б продовжувалася. Отже, і білок ні при чому.
Таким чином, методом виключення було встановлено, що спадкову інформацію в клітині зберігає і передає молекула ДНК. І дійсно, коли зруйнували ДНК, утворення капсульних форм А з беськапсульних Б припинилася.
Явище перетворення, тобто спадкової зміни властивостей однієї форми бактерій під впливом речовин іншої форми, було назване трансформацією. Речовина ж, що викликає трансформацію, отримала назву трансформуючого агента. Ним, як було встановлено, служить ДНК.
3.2 Розшифровка генетичної інформації
дезоксирибонуклеїновий хромосома генетичний спадковість
Полімерні ланцюги білків складаються з мономірних ланок – амінокислот і послідовність розташування їх в білковій молекулі строго специфічна. У зв'язку з цим очевидно, Що в ДНК повинна зберігатися інформація не лише про якісний і кількісний склад амінокислот в молекулі даного білка, але і про послідовність їх розташування. Відповідно якимсь чином мають бути закодовані в полінуклеотидному ланцюзі ДНК кожна амінокислота і білок в цілому.
Знаючи, що амінокислот всього 20, а нуклеотидів – 4, легко уявити собі, що 4 нуклеотида явно недостатньо для кодування 20 амінокислот. Недостатньо також і коди з двох нуклеотидів на кожну кислоту (4 = 16). Для кодування 20 амінокислот необхідно групи щонайменше з трьох нуклеотидів (4 = 64). Подібна група, що несе інформацію про одну амінокислоту в молекулі білка, називається кодоном. Вся ж ділянка ДНК, відповідальна за синтез однієї молекули білка, в цілому якраз і є ген. Значить, в гені стільки кодонів, скільки амінокислот входить до складу даного білка, що синтезується.
Синтез білків відбувається на рибосомах. ДНК же локалізована в ядрі, в його хромосомах. Виникає питання: яким чином генетична інформація з ядра переноситься в цитоплазму на рибосому? Передбачити, що ДНК сама поступає через пори ядерної мембрани, не можна: Адже ДНК ядер володіє величезною молекулярною масою і у зв'язку з цим просто не може проникнути через крихітні пори ядерної мембрани. Тому мають бути якісь дрібніші молекули – посередники, що передають генетичну інформацію від ДНК до білків. А.Н. Белозерський і А.Г. Спірін висунули міркування, що цю роль грають молекули РНК.
Але одразу ж виникає інше питання: як копіюється інформація з ДНК на коротші молекули РНК? Щоб відповісти на нього, треба пригадати, що в будові нуклеотиду ДНК і РНК багато загального. Зокрема, через схожість азотистих підстав інформація з ДНК на РНК може переноситися за принципом компліментарності, згідно з яким утворювати пари можуть не лише нуклеотиди в системі ДНК-ДНК, але і нуклеотиди в системі ДНК-РНК.
Оскільки РНК так само, як і ДНК, містить пурінові і пірімідінові основи, на ділянках одного з ланцюгів ДНК за допомогою ферменту РНК – полімерази будуються компліментарні короткі ланцюги РНК. Цей процес синтезу РНК на матриці ДНК, що відбувається за допомогою ферментів, носить назву транскрипції. В результаті процесу транскрипції закодована в ДНК послідовність нуклеотидів, яка і є певною генетичною інформацією, передається на РНК. Транскрипція відбувається на окремих ділянках ДНК – генах, кожен з яких містить набір кодонів, що програмують послідовності амінокислот в даній молекулі білка.
Рибонуклеїнова кислота, на якій зроблена копія ДНК, складається з одного ланцюга нуклеотидів, в яких дезоксирибоза замінена на рібозу, а тимін (Т) замінений на урацил (У) .
Таким чином, в кожному кодоні ДНК транскрибірується в компліментарний кодон РНК. В результаті виходить як би негатив РНК з позитиву – ДНК. Ця РНК, що знімає інформацію з ДНК, називається інформаційній РНК (І-РНК).
До теперішнього часу ученим удалося розшифрувати кодони для всіх амінокислот. Виявилось, що одній амінокислоті частенько відповідає декілька кодонів. Такий код називається виродженим. Поряд з цим виявилося, що деякі кодони не кодують жодну амінокислоту. Їх називають безглуздими. Безглузді кодони мають дуже важливе значення, оскільки визначають кордони початку і кінця транскрипції, тобто кордони генів в даній молекулі ДНК.
Якщо в прокаріот гени по своєму запису безперервні, то в еукаріот це далеко не так. Інформація необхідна для синтезу білка, виявляється записаною з пропусками, переривчасто: гени складені з кодуючих ділянок (екзонів), розділених некодуючими послідовностями (інтронами). При транскрипції таких генів інтрони копіюються разом з екзонамі в загальну молекулу пре-мРНК. Остання піддається в ядрі серії реакцій, в ході яких інтрони вирізуються, а екзони з'єднуються один з одним своїми краями. Молекула М-КОДУ-РНК, що вийшла, покидає ядро і виявляється вже у владі системи трансляції, що дешифрує нуклеотидну послідовність. З'єднання амінокислот з утворенням білка відбувається в цитоплазмі на особливих частках-рибосомах. Все це можна порівняти з фабрикою (клітина), в якій креслення (гени) зберігаються в бібліотеці (ядро), а для випуску продукції (білки) використовуються не самі креслення (ДНК), а їх фотокопія (мРНК). Копіювальна машина (РНК-полімераза) випускає або по одній сторіночці фотокопії (ген), або відразу цілу главу (оперон). Виготовлені копії видаються через спеціальні віконця (пори ядерної мембрани). Їх потім використовують на монтажних лініях (рибосоми) з дешифратором (генетичний код) для здобуття із заготовок (амінокислот) остаточної продукції (білки).
Як же відбувається сам процес синтезу білка?
Перший його етап пов'язаний з функціонуванням транспортної РНК (т- РНК). Число різновидів цих молекул РНК дорівнює числу основних амінокислот, тобто їх 20 видів. Кожній амінокислоті відповідає певна Т-РНК і певний фермент.
У цитоплазмі клітини завжди в достатній кількості є різні амінокислоти. З них молекула Т-РНК відбирає відповідну амінокислоту. Кожна амінокислота, перш ніж вступити в білковий ланцюг, за допомогою спеціального ферменту з'єднується з АТФ і запасається енергією.
«Зарядившись» таким чином амінокислота зв'язується з Т-РНК, яка переносить її до рибосом. Характерною межею молекул Т-РНК є наявність в їх структурах антикодонів. Ця особливість забезпечується розташуванням відповідних амінокислот в тій послідовності кодонів, яка зашифрована в молекулі І-РНК. Між рядом розташованими амінокислотами виникають пептидні зв'язки і синтезується молекула білка.
Таким чином, генетична інформація, ув’язнена в ДНК, реалізується різними видами РНК в молекулах відповідних білків. Процес передачі програми, принесеної з собою молекулами І-РНК, отримав назву трансляції.
4. Як же працюють гени?
Біосинтез білків, що протікає під генетичним контролем, - це лише початок складних, багатоступінчастих біохімічних процесів клітки.
При вивченні рослин, що вегетативно розмножуються, отримані докази того, що окремі частини організму, такі як бульба, аркуш, цибулина, держак і так далі, дають початок нормальній рослині. А це означає, що всі клітини даного організму несуть повну генетичну інформацію, так само як і вихідна запліднена яйцеклітина, з якої розвивається тварина. В той же час в будь-якому організмі містяться диференційовані клітини з певною формою і функцією. Наприклад, у людини є клітини нервові, м’язові, статеві і так далі Але, не дивлячись на те, що кожна клітина нашого тіла несе повну генетичну інформацію, тобто повний набір генів, отриманих від батьків, функціонують лише певні гени, останні знаходяться в неактивному стані. Яким же чином в клітині регулюється діяльність тих або інших генів?
У всіх процесах життєдіяльності клітини роль біологічних каталізаторів грають ферменти. Без їх участі не протікає практично жодна хімічна реакція синтезу або розкладу речовин. У кожній клітині (з її характерними функціями) повинні знаходитися регуляторні механізми, контролюючі не лише якісний склад ферментів, але і їх кількість. Інакше макромолекули білків, що безперервно синтезуються, накопичувалися б в клітині непотрібним баластом, захаращуючи її.
І дійсно, подібний регуляторний механізм був виявлений в клітинах бактерій в 1961 році французькими ученими Франсуа Жакобом і Жаком Моно.
Що ж це за механізм?
Ф. Жакоб і Ж. Моно довели, що не всі гени бактерій однакові по своєму призначенню. Одна група – структурні гени, що видають інформацію про синтез певних поліпептидних ланцюгів, інша – регуляторні гени, що відають активністю структурних генів шляхом їх «включення» і «виключення».