Смекни!
smekni.com

Кратчайшая история времени Стивен Хокинг Леонард Млодинов (стр. 14 из 28)

Иногда при коллапсе очень массивной звезды ее внешние слои могут быть выброшены в пространство колоссальным взрывом, называемым вспышкой сверхновой. Мощь этого взрыва настолько велика, что сверхновая светит ярче всех звезд целой галактики вместе взятых. Примером может служить сверхновая Крабовидной туманности. Китайские летописи относят ее к 1054 г. Хотя взорвавшаяся звезда находилась на расстоянии 5000 световых лет, она оставалась видимой для невооруженного глаза в течение нескольких месяцев и сияла столь ярко, что была различима даже днем, а ночью при ее свете можно было читать. Вспышка сверхновой в 500 световых годах от нас — в десять раз ближе Крабовидной туманности — оказалась бы в сто раз ярче и буквально превратила бы ночь в день. Чтобы почувствовать мощь подобного взрыва, представьте, что вспышка соперничала бы с сиянием Солнца, даже притом, что звезда находилась бы в десятки миллионов раз дальше него (напомним, что Солнце находится всего в восьми световых минутах от Земли). Достаточно близкая вспышка сверхновой звезды хотя и не разрушила бы Землю, но сопровождалась бы излучением, способным убить все живое на нашей планете. Недавно было высказано предположение, что происшедшее два миллиона лет назад вымирание морских организмов было вызвано всплеском космического излучения, порожденного вспышкой сверхновой вблизи от Земли. Некоторые ученые считают, что высокоорганизованная жизнь может развиться только в тех областях галактик, где не слишком много звезд, — так называемых зонах жизни, — поскольку в районах более плотного скопления звезд вспышки сверхновых — столь обычные явления, что они периодически уничтожают любые зачатки биологической эволюции. Каждый день во Вселенной вспыхивают сотни тысяч сверхновых звезд. В отдельной галактике сверхновые появляются примерно раз в столетие. Но это средние показатели. К сожалению (для астрономов, по крайней мере), последняя вспышка сверхновой в Млечном Пути произошла в 1604 г., еще до изобретения телескопа.

Главной претенденткой на роль следующей сверхновой в нашей Галактике является звезда ро Кассиопеи. К счастью, она находится на вполне безопасном для нас расстоянии 10 000 световых лет. Она относится к немногочисленному классу желтых сверхгигантов. Во всем Млечном Пути имеется лишь семь звезд этого типа. Международная группа астрономов начала изучать ро Кассиопеи в 1993 г. За прошедшие годы у звезды наблюдались периодические колебания температуры на несколько сотен градусов. Затем, летом 2000 г., температура ее внезапно упала примерно с 7000 до 4000 градусов. В это время исследователи обнаружили в атмосфере звезды окись титана, которая, как считается, входит в состав оболочки, выброшенной с поверхности звезды мощной ударной волной.

При вспышке сверхновой ряд тяжелых элементов, образовавшихся в конце жизненного цикла звезды, выбрасывается назад в межзвездную среду, становясь сырьем для формирования следующего поколения звезд. Наше Солнце содержит приблизительно 2% таких тяжелых элементов. Это звезда второго или третьего поколения, которая сформировалась приблизительно пять миллиардов лет назад из облака вращающегося газа, содержавшего выбросы ранних сверхновых. Б о льшая часть газа из того облака пошла на формирование Солнца либо была выброшена вовне, но небольшая часть тяжелых элементов смогла собраться вместе и образовать подобные Земле планеты, которые теперь обращаются вокруг Солнца. И золото в наших украшениях, и уран в наших ядерных реакторах — все это остатки сверхновых звезд, которые вспыхнули еще до рождения Солнечной системы!

Когда Земля еще только сконденсировалась, она была очень горячей и не имела атмосферы. Со временем она остыла и окуталась оболочкой газов, выделявшихся из скальных пород. Мы не смогли бы выжить в этой первичной атмосфере. Вместо кислорода в ней присутствовало множество других, ядовитых для нас, газов, например сероводород (которым пахнут тухлые яйца). Однако существуют некоторые примитивные формы жизни, процветающие именно в таких условиях. Вероятно, они развились в океанах в результате случайного соединения атомов в большие структуры, называемые макромолекулами, которые обладали способностью собирать другие атомы в океане в подобные же структуры. Таким образом, они воспроизводили самих себя и размножались. В некоторых случаях при воспроизведении случались ошибки. Как правило, получившаяся в результате новая макромолекула не могла воспроизводить себя и в конце концов разрушалась. Однако некоторые сбои приводили к появлению новых макромолекул, еще лучше репродуцирующих себя. Обладая подобным преимуществом, они успешно вытесняли исходные макромолекулы. Так было положено начало процессу эволюции, который привел к развитию все более сложных самовоспроизводящихся организмов. Первые примитивные формы жизни потребляли различные вещества, включая сероводород, и выделяли кислород. Это постепенно изменило состав атмосферы, приблизив его к нынешнему, и послужило предпосылкой для возникновения более высокоорганизованных форм жизни: рыб, рептилий, млекопитающих и, наконец, людей.

Описанная картина Вселенной основана на общей теории относительности. Она согласуется со всеми современными наблюдениями. Однако математика в действительности не может оперировать бесконечными числами, поэтому, утверждая, что Вселенная началась с Большого Взрыва, общая теория относительности тем самым предсказывает, что во Вселенной есть точка, где сама эта теория перестает работать. Подобная точка — пример того, что математики называют сингулярностью. Когда теория предсказывает сингулярности типа бесконечной температуры, плотности и кривизны, это свидетельствует о том, что она должна быть как‑то изменена. Общая теория относительности — неполная теория, поскольку она не объясняет, как появилась Вселенная.

Двадцатый век изменил взгляды человека на Вселенную. Мы поняли, какое скромное место занимает наша планета в необъятности Вселенной; обнаружили, что время и пространство искривлены и неотделимы друг от друга; открыли, что Вселенная расширяется и что она имела начало. Однако мы также убедились, что, рисуя новую картину крупномасштабной структуры Вселенной, общая теория относительности терпит неудачу при описании начала времен.

Двадцатое столетие также вызвало к жизни и другую великую частную физическую теорию — квантовую механику. Она имеет дело с явлениями, которые происходят в очень маленьких масштабах. Концепция Большого Взрыва говорит, что, по‑видимому, зарождающаяся Вселенная была настолько мала, что, даже изучая ее «крупномасштабную структуру», нельзя пренебрегать эффектами квантовой механики, важными в микроскопических масштабах. И сегодня самые большие надежды в части окончательного постижения Вселенной мы возлагаем на объединение этих двух частных теорий в единую квантовую теорию гравитации. Далее будет показано, что объединение общей теории относительности с принятым в квантовой механике принципом неопределенности делает возможным существование конечного пространства и времени, не имеющего никаких пределов или границ. И возможно также, что обычные физические законы действуют повсеместно, в том числе и в начале времен, не приводя ни к каким сингулярностям.

Глава девятая

КВАНТОВАЯ ГРАВИТАЦИЯ

Успех научных теорий, особенно теории тяготения Ньютона, привел французского ученого Пьера Симона Лапласа в начале девятнадцатого столетия к убеждению, что Вселенная полностью детерминирована. Иначе говоря, Лаплас полагал, что должен существовать ряд законов природы, которые позволяют — по крайней мере, в принципе — предсказать все, что случится во Вселенной. Для этого требуется «всего лишь» подставить в такие законы полную информацию о состоянии Вселенной в некоторый произвольно выбранный момент времени. Это называется заданием «начального состояния» или «граничных условий». (В случае граничных условий речь идет о границе в пространстве или времени; граничное состояние в пространстве есть состояние Вселенной у внешних ее границ — если таковые имеются.) Лаплас считал, что, располагая полным набором законов и зная начальные или граничные условия, мы сможем в точности определить состояние Вселенной в любой заданный момент времени.

Необходимость знать начальные условия, по‑видимому, интуитивно очевидна: различные текущие состояния, без сомнения, приведут к различным состояниям в будущем. Необходимость знания граничных условий в пространстве чуть труднее для понимания, но в принципе это то же самое. Уравнения, лежащие в основе физических теорий, могут давать весьма разнообразные решения, выбор между которыми основывается на начальных или граничных условиях. Здесь прослеживается отдаленная аналогия с состоянием банковского счета, на который поступают и с которого списываются большие суммы. Закончите вы банкротом или богачом, зависит не только от перечисляемых сумм, но и от начального состояния счета.

Если Лаплас прав, тогда физические законы позволят нам по известному сегодняшнему состоянию Вселенной определить ее состояния в прошлом и будущем. Например, зная положения и скорости Солнца и планет, мы можем при помощи законов Ньютона вычислить состояние Солнечной системы в любой момент прошлого или будущего[11]. В случае планет детерминизм кажется совершенно очевидным — в конце концов, астрономы с очень высокой точностью предсказывают такие события, как затмения. Но Лаплас пошел дальше, предположив, что подобные законы управляют и всем остальным, включая человеческое поведение.

Но действительно ли ученые способны предвычислить все наши будущие действия? Число молекул в стакане воды превышает десять в двадцать четвертой степени (единица с двадцатью четырьмя нуля). На практике мы не имеем ни малейшей надежды узнать состояние каждой из них; еще меньше у нас шансов узнать точное состояние Вселенной или даже своего собственного тела. Так что, говоря о детерминированности Вселенной, мы подразумеваем, что, даже если наших интеллектуальных способностей недостаточно для этих вычислений, наше будущее тем не менее предопределено.