Смекни!
smekni.com

Идентификация генов биосинтеза эктоина у метилотрофной бактерии Methylarcula marina (стр. 1 из 11)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Пущинский государственный университет

Учебный центр микробиологии и биотехнологии

На правах рукописи

Качаев Заур Мозырович

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

“Идентификация генов биосинтеза эктоина у метилотрофной бактерии Methylarcula marina

Направление подготовки магистра (020200 Биология)

Магистерская образовательная программа

(Микробиология и вирусология)

«Работа допущена к защите»:

Научный руководитель, д.б.н., профессор ________ Ю.А. Троценко

Руководитель магистерской образовательной программы,

д.б.н., профессор _________ А.А. Леонтьевский

Пущино, 2010 г.


Оглавление

Список сокращений

Введение

Глава 1. Галофильные микроорганизмы

1.1 Осмоадаптация

1.2 Гиперосмотический шок

1.3 Спектр совместимых растворимых веществи их распространение у микроорганизмов

Глава 2. Биосинтез эктоина и гидроксиэктоина

2.1 Гены и ферменты биосинтеза эктоина и гидроксиэктоина

Глава 3. Осмоадаптация аэробных метилотрофных бактерий. Экспериментальная часть

Глава 4. Материалы и методы исследования

4.1 Культивирование бактерий

4.2 Получение бесклеточных экстрактов и определение концентрации белка

4.3 Определение активности диаминобутиратацетилтрансферазы.

4.4 Выделение и анализ осмопротекторов

4.5 Молекулярно-биологические методы

4.6 Определение и анализ последовательностей нуклеотидов

4.7 Клонирование и экспрессия генов

4.8 Выделение и очистка белков

4.9 Определение физико-химических свойств ферментов

Результаты и обсуждение

Глава 5. Идентификация и характеристика генов биосинтеза эктоина у метилотрофной бактерии Methylarcula marina

5.1 Накопление эктоина у M. marina

5 2 Идентификация генов, кодирующих ферменты биосинтеза эктоина у M.marina

5.3 Интеграция генов биосинтеза эктоина из M. marina в негалофильный штамм Methylobacterium extorquens AM1

Глава 6. Характеристика рекомбинантной ДАБ-ацетилтрансферазы

6.1 Клонирование, очистка и первичная характеристика рекомбинантной ДАБ-ацетилтрансферазы

Выводы

Список литературы


Список сокращений

ask – ген, кодирующий аспартаткиназу (Ask)

ectA – ген, кодирующий ДАБ-ацетилтрансферазу (EctA)

ectB – ген, кодирующий ДАБ-аминотрансферазу (EctB)

ectC – ген, кодирующий эктоинсинтазу (EctC)

ectD – ген, кодирующий эктоингидроксилазу (EctD)

His – гистидин

Ni2+-NTA - Ni2+– нитроацетат агароза

SDS – додецилсульфат натрия

АТФ – аденозин-5’-трифосфат

БСА – бычий сывороточный альбумин

ВЭЖХ – высокоэффективная жидкостная хроматография

ДАБ – диаминобутират

ДАБАцТ – ДАБ-ацетилтрансфераза

ДТНБ – 5,5’-дитиобис-(2-нитробензоат)

ДТТ – 1,4-дитиотриетол

ИПТГ – изопропил-1-тио-β-D-галактопиранозид

КоА – коэнзим А

НАД(Ф)+ – никотинамидадениндинуклеотид(фосфат), оксиленный

НАД(Ф)Н – никотинамидадениндинуклеотид(фосфат), восстановленный

ОРС – открытая рамка считывания

п.н. – пары нуклеотидов

ПААГ – полиакриламидный гель

ПЦР – полимеразная цепная реакция

Трис-НСl – трис(гидроксиметил)аминометанхлорид

ТХУ – трихлоруксусная кислота

ФЕП – фосфоенолпируват

ФМС – феназинметосульфат

ФМСФ – фенилметансульфонилфторид

Х-Gal – 5-бром-4-хлор-3-индолил-β-D-галактозид

ЦТК – цикл трикарбоновых кислот

ЭДТА – этилендиаминтетраацетат


Введение

Актуальность проблемы. Микроорганизмы, существующие в условиях высокой солености, для поддержания осмотического равновесия между клеткой и внешней средой накапливают в клетках неорганические ионы или низкомолекулярные органические соединения – осмолиты или осмопротекторы. Стратегию осмоадаптации, связанную с аккумуляцией органических осмопротекторов – веществ, совместимых с основными метаболическими процессами в клетках, реализуют многие умеренно галофильные прокариоты. Среди них недавно обнаружены аэробные метилотрофные бактерии, выделенные из (гипер)соленых и щелочных водоемов (Khmelenina et al., 1999; Kalyuzhnaya et al., 2001; Doronina et al., 2003), использующие в качестве источников углерода и энергии метан (метанотрофы) или его окисленные и замещенные производные (метилобактерии). Установлено, что аэробные галофильные метилотрофы накапливают циклическую иминокислоту эктоин (1,4,5,6-тетрагидро-2-метил-4-пиримидин карбоксилат), глутамат и сахарозу (Khmelenina et al., 1999).

Биосинтез эктоина, широко распространенного в микробном мире осмопротектора, у гетеротрофных галофильных бактерий начинается реакцией трансаминирования L-аспартилполуальдегида с последующим ацетилированием образующегося L-2,4-диаминобутирата (ДАБ) и завершается циклизацией N-ацетил-L-2,4-ДАБ в эктоин (Galinski, 1995). В последние годы предпринимаются попытки детального изучения свойств ферментов и генов этого биохимического пути, что обусловлено практическими задачами получения эктоина, перспективного биопротектора, используемого в медицине и косметике, а также в научной практике в качестве водоудерживающего средства и стабилизатора биомолекул и целых клеток.

Специфические ферменты, катализирующие реакции биосинтеза эктоина – ДАБ-ацетилтрансфераза (EctА), ДАБ-аминотрансфераза (EctB) и эктоинсинтаза (EctС), частично охарактеризованы у Halomonas elongata (Ono et al., 1999), а так же у метанотрофной бактерии Methylomicrobium alcaliphilum 20Z (Reshetnikiov et. al., 2006). Гены, кодирующие эти ферменты, идентифицированы у ряда гетеротрофных, автотрофных галофильных прокариот и метилотрофных бактерий, установлено расположение данных генов в одном опероне ectABC. Однако соответствующие сведения о свойствах ферментов и организации генов биосинтеза эктоина у галотолерантной метилотрофной альфа-протеобактерии Methylarcula marina отсутствуют. В связи с вышеизложенным представлялось актуальным провести исследование ферментов и генов биосинтеза эктоина у M. marina для выявления степени сходства и/или возможных отличий от других бактерий.

Цель и задачи исследования. Цель данной работы - идентификация генов биосинтеза эктоина у метилотрофной альфа-протеобактерии Methylarcula marina. Для достижения указанной цели были поставлены и решались следующие задачи:

1. Идентифицировать гены биосинтеза эктоина у M. marina, провести их филогенетический анализ.

2. Клонировать ген ectA, получить и охарактеризовать рекомбинантную ДАБ-ацетилтрансферазу.

3. Сконструировать плазмидную конструкцию, несущую ectABC гены под промотором метанолдегидрогеназы Pmax, для интеграции в хромосому негалофильной метилобактерии Methylobacterium еxtorquens AM1.

4. Измерить накопление эктоина в рекомбинантных клетках и в среде культивирования M. еxtorquens AM1.

Магистерская диссертация выполнена на базе ИБФМ им. Г.К. Скрябина РАН, в лаборатории радиоактивных изотопов под руководством д.б.н., проф. Троценко Ю.А.

Научная новизна. Установлено, что в ответ на увеличение солености среды изучаемый галотолерантная метилотрофная бактерия накапливает в клетках эктоин. Впервые определена полная нуклеотидная последовательность генов биосинтеза эктоина у метилотрофной бактерии Methylarcula marina, относящейся к классу α-Proteobacteria. Показано, что у M. marina гены, кодирующие ДАБ-ацетилтрансферазу (ectA), ДАБ-аминотрансферазу (ectB), эктоинсинтазу (ectC) и аспартаткиназу (ask), сцеплены и составляют оперон ectABC-ask.

Клонированием и экспрессией в Escherichia coli гена ectA из M. marina впервые получен гомогенный и частично охарактеризован препарат рекомбинантной ДАБ-ацетилтрансферазы. Полученные результаты создают основу для изучения регуляции биосинтеза эктоина на биохимическом и генетическом уровнях у M. marina .

Практическое значение работы. Проведенное расшифровка нуклеотидных последовательностей и организации ect-генов позволяет рационально манипулировать данным генетическим материалом с целью создания более эффективных штаммов-продуцентов эктоина на основе метанола.


Глава 1 Галофильные микроорганизмы

Микроорганизмы обитают в водной среде с различной степенью солености, от пресных и морских биотопов до гиперсолёных водоёмов с высокими концентрациями NaCl, вплоть до насыщения. По отношению к солености микроорганизмы разделяются на несколько физиологических групп.

Негалофилные микрооганизмы, обитающие в пресных и ультрапресных экосистемах, не нуждаются в NaCl и способны существовать в местах с крайне низким содержанием солей (≤0.01%). К ним относится также симбиотрофная микрофлора, связанная с организмом человека, животных и растений. Угнетение их роста начинается обычно при концентрации NaCl около 3%. Галотолерантные микрооганизмы выдерживают более высокие концентрации и часто обитают в местах с меняющейся соленостью, например, в почве. Слабые галофилы оптимально растут при солености около 3.5% и, как правило, развиваются в узком диапазоне концентраций соли (2.5–5% NaCl). К слабым галофилам относят большинство морских микроорганизмов. Умеренные галофилы лучше всего растут на средах, содержащих 5-15% соли. Микроорганизмы, способные к росту в присутствии менее чем 0.1 М соли, относятся к факультативным галофилам. Умеренные галофилы обычно нуждаются не только в ионах Na+, но также в K+ и Mg2+. Экстремальные галофилы оптимально растут на среде, содержащей от 12–15% NaCl вплоть до насыщенных растворов. Примером могут служить “красные галофилы” - галобактерии и галококки.

Особую группу составляют галоалкалофилы, растущие при высоких концентрациях соды и сочетающие в себе свойства галофилов и алкалофилов. Типичными местами их обитания являются высокоминерализованные содовые озера.

Галофильные и галотолерантные микроорганизмы находятся во всех трёх доменах жизни: Археи, Бактерии и Эукариоты (Oren, 1999).


1.1 Осмоадаптация

Один из основных параметров всех экосистем - осмотический стресс. Вода свободно проникает через мембрану, и неадаптированные организмы быстро теряют воду в присутствии солей. Чистая вода имеет активность (αw) равную 1, а растворы солей имеют значение αw меньше 1 (αw – отношение давления водяного пара над раствором к давлению над дистиллированной водой при испарении). Обитатели ультрапресных вод развиваются при водном потенциале 1, для морской воды этот потенциал равен 0.98, для гиперсоленых озер 0.75. Среды с повышенным содержанием сахара (αw≈0.61), благоприятны для развития ксерофильных организмов (грибы и дрожжи), в гиперсолёных местообитаниях, где доступность воды лимитируется высокими концентрациями солей, обычно NaCl, распространены, главным образом, прокариоты (Grant, 2004). Для своего существования клетки должны поддерживать тургор – равное или избыточное по отношению к окружающей среде осмотическое давление в цитоплазме.