нии напряжения всегда нужна некая точка отсчета. Для мембран обычно в качестве такой точки берется точка, расположенная очень далеко от поверхности мембраны, и потенциал в ней принимается равным нулю.
3.Сила тока I измеряется в амперах; один ампер по определению равен одному 1 Кл/с.
4.Проводимость или сопротивление характеризует сопротивление потоку заряженных частиц, направленному от одной точки к другой. Эти величины определяются из закона Ома, связывающего силу тока с разностью потенциалов:
Проводимость измеряется в сименсах, а обратная ей величина — сопротивление — в омах. Проводимость 1 См означает, что при изменении разности потенциалов на 1 В сила тока изменяется на 1 Клс-1.
5.Удельное сопротивление qиспользуется для характеристики гомогенных проводящих сред, в частности для описания ионного потока через заполненные водой мембранные каналы. Удельное сопротивление — это электрическое сопротивление среды между двумя электродами площадью 1 см2, находящимися друг от друга на расстоянии 1 см. Размерность удельного сопротивления — Ом-см. Сопротивление среды между двумя электродами площадью А, находящимися на расстоянии х друг от друга, можно определить по формуле
6. Емкость С. Для создания разности потенциалов между двумя
точками, в частности между двумя сторонами бислоя, достаточно
просто разделить заряды между этими точками. Емкость — это ве-
личина разделенных зарядов, необходимая для создания определен-
ной разности потенциалов:
С = Q/V,
где Q— величина заряда с каждой стороны мембраны, положительного с одной и отрицательного с другой, V — создаваемая разность потенциалов. Емкость измеряется в фарадах. Емкость мембраны — очень важная электрическая характеристика, поскольку она определяет, какое количество зарядов нужно перенести через мембрану, чтобы создать на ней определенное напряжение. Удельная емкость равна емкости единицы площади и зависит от количества зарядов, разделенных на единице площади мембраны.
В первом приближении бислойную мембрану можно предста-
вить в виде тонкой пластины из непроводящего материала, разделяющей два водных раствора. Таким образом, мембрана является обычным плоским конденсатором, в котором заряды находятся на двух границах раздела фаз мембрана—вода. Емкость такого конденсатора зависит только от расстояния между двумя заряженными поверхностями и диэлектрической проницаемости материала между этими поверхностями. Диэлектрическая проницаемость характеризует поляризуемость материала, т. е. то, насколько эффективно помещенный в среду из этого материала постоянный электрический диполь «чувствует» приложенное электрическое поле. Большая диэлектрическая проницаемость формально означает «компенсацию» части зарядов на поверхности мембраны, так что для создания одной и той же разности потенциалов в случае большой е необходимо перенести через мембрану ббльший заряд.
где £о — так называемая абсолютная диэлектрическая проницаемость, т. е. диэлектрическая проницаемость вакуума, равная 8,85-10~12 Кл-В_1-м~. Для фосфолипидных бислоев и биомембран измеряемые значения удельной емкости примерно равны и составляют около 1 мкФ/см2, что соответствует диэлектрической проницаемости е = 2 при толщине около 25 А. В отличие от емкости электрическое сопротивление мембраны зависит от ее типа и от числа ионных каналов и для разных мембран варьирует в широких пределах.
Теперь мы можем перейти к определению суммарного трансмембранного электрического потенциала. Работа, необходимая для перемещения заряда, который находится на бесконечно большом расстоянии от мембраны, к поверхности мембраны, а затем в гидрофобную область бислоя, имеет следующие составляющие.
1.Работа, связанная с переносом заряда из среды с одной диэлектрической проницаемостью в среду с другим ее значением. Необходимость совершения такой работы связана с различием в поляризации диполей этих сред, и именно этим в значительной степени обусловлена дестабилизация зарядов в гидрофобной области мембраны.
2.Дипольный потенциал. Основной вклад вносят, по-видимому, ориентированные карбонильные группы фосфолипидных молекул. Возможно, определенную роль играют и ориентированные молекулы воды.
3.Поверхностный потенциал. Создается заряженными группами на поверхности мембраны.
4.Трансмембранный потенциал. Образуется за счет разделения
зарядов между водными фазами по разные стороны мембраны. Ои может создаваться в результате работы электрогенных ионных насосов или благодаря пассивной проницаемости бислоя для ионов в равновесных или стационарных условиях.
Рассмотрим вкратце каждый из этих компонентов.
3.1. РАБОТА, СОВЕРШАЕМАЯ ПРИ ПЕРЕНОСЕ ИОНА ВНУТРЬ БИСЛОЙНОЙ МЕМБРАНЫ
Любой ион в воде стабилизируется благодаря взаимодействиям с диполями воды. Перемещение иона из воды в центр мембраны энергетически невыгодно, поскольку сопряжено с затратами энергии на освобождение иона от гидратной оболочки. Наиболее адекватной количественной моделью такого перехода является модель Борна. Работа, необходимая для переноса иона с зарядом qи радиусом г из среды с диэлектрической проницаемостью £2 в среду с диэлектрической проницаемостью Е\, определяется по формуле
Диэлектрическая проницаемость воды равна 80; для внутренней части мембраны обычно используют характерную для углеводородов величину Јi = 2. Тогда работа, совершаемая при переносе иона с валентностью Z, составит W = ккал/моль. То есть для_ перемещения внутрь мембраны одновалентного иона радиусом 2 А нужно затратить 40 ккал/моль. Ясно, что такое перемещение энергетически весьма невыгодно, иными словами, бислой является труднопреодолимым барьером для ионов. Отметим, однако, что ионы большого радиуса весьма эффективно могут стабилизироваться в мембране. Это помогает понять, каким образом про^' никают через мембрану такие ионы, как I3~ SCN" и заряженные комплексы ионов с ионофорами.
Помимо энергии Борна имеется еще один компонент, связанный с возникновением на границе с диэлектриком сил поляризации. Появление заряда по одну сторону от границы раздела фаз вызывает переориентацию диполей в среде по другую сторону мембраны. Соответствующая энергия называется энергией «отображения». Для мембран она соответствует только 10—15%-ному уменьшению энергии Борна.
Все упомянутые модели рассматривают мембрану как простой слой диэлектрика. Ясно, однако, что находящиеся по краям бислоя полярные головки создают слой толщиной около 10 А, существенно отличающийся по своим свойствам от гидрофобного центра.
Диэлектрическая проницаемость в этой области должна измениться от 2 по одну сторону до 80 — по другую; в качестве средней величины приводятся значения от 10 до 30. Согласно модели, в это значение вносит свой вклад вращение полярных фосфолипидных головок. Гидрофильные области мембран интересны еще и тем, что именно здесь происходит связывание многих мембранных зондов и амфифильных молекул.
3.2. ПОТЕНЦИАЛ ВНУТРЕННИХ ДИПОЛЕЙ
Как показывают экспериментальные и теоретические данные, ориентированные диполи на поверхности мембраны создают в центре фосфолипидного бислоя потенциал, равный примерно 240 мВ, положительный внутри. Это эквивалентно вкладу в свободную энергию 5,5 ккал/моль, положительному для катионов и отрицательному для анионов. Полярные фосфохолиновые головки ориентированы параллельно плоскости мембраны и не должны ни при каких условиях образовывать диполи, направленные положительным концом внутрь мембраны, поскольку для этого положительно заряженный остаток холина должен располагаться ближе к центру бислоя, чем отрицательно заряженный фосфат. Вероятнее всего, внутренние диполи связаны с ориентированными карбонильными группами эфирных связей фосфолипидных молекул. Влияние этого потенциала на профиль потенциальной энергии, по-видимому, ограничивается лишь внутренней частью мембраны и проиллюстрировано на рис. 7.4.
При транспорте ионов небольшого размера, например Na+ и О ", это приводит к тому, что высота энергетического барьера для транспорта анионов через бислой оказывается несколько меньшей, чем для транспорта катионов. Тем не менее, для небольших ионов любого заряда этот барьер остается достаточно высоким, а результирующие коэффициенты проницаемости через бислой — очень малыми.
Все сказанное не распространяется на такие гидрофобные ионы, как ТФФ+ и ТФБ~. У этих ионов заряд окружен неполярными группами, и благодаря вкладу гидрофобной компоненты в суммарное изменение свободной энергии коэффициент распределения для этих ионов сильно сдвинут в пользу мембраны. Гидрофоб-ность окружения позволяет скомпенсировать большую часть электростатической энергии. Кроме того, сама энергия Борна для этих ионов меньше из-за их относительно больших размеров. Профиль свободной энергии для гидрофобных ионов также показан на рис. 7.4. Как видно из этих данных, гидрофобная компонента свободной энергии для обоих ионов составляет около - 7 ккал/моль, а взаимодействие с внутренними диполями приво-
дит к стабилизации гидрофобных анионов в бислое. Обратите внимание на минимумы в профиле потенциальной энергии, соответствующие связыванию гидрофобных анионов вблизи поверхности мембраны — в той области, где локализуются эфирные группы фосфолипидов.