Смекни!
smekni.com

Антиоксидантные свойства дигидрокверцетина (стр. 2 из 8)

Таблица 1.Содержание флавоноидов в растениях.

Кемпфе- рол Кверце-тин Кемп-ферол Кверце-тин
Яблоки 0-7 20-263 Чёрный виноград 0-2 15
Айва 0 63 Белый виноград 0-2 12
Абрикосы 0-2 25-53 Огородная капуста 210-250 50-110
Груши 0-12 3-28 Краснокочанная капуста 0-2 5-6
Кислая вишня 5-17 23-80 Белокочанная капуста 0-2 0-1
Сладкая вишня 0-6 6-24 Цветная капуста 0-2 0-1
Слива 0-2 0-15 Лук-порей 30-200 0-25
Персики 0-2 0-4 Лук-резанец 10 300
Бузина 0 105-237 Лук репчатый (цветной) 0-2 347
Черника 0-6 105-160 Цикорий 46 1-2
Чёрная смородина 0-10 33-68 Французская фасоль 12 39
Белая смородина 0-2 3-28 Стручковая фасоль 0-2 29
Красная смородина 0-2 2-27 Томаты 0-2 7-8
Ежевика 14 33 Морковь 0-1 0-2
Земляника 12 9 Картофель 0-1 0-2
Малина 0-1 29

1.2 МЕТАБОЛИЗМ ФЛАВОНОИДОВ

1.2.1 Роль флавоноидов в растениях

Биологическая роль флавоноидов заключается в их участии в окислительно-восстановительных процессах, происходящих в растениях. Они выполняют защитные функции, предохраняя растения от различных неблагоприятных воздействий окружающей среды. Многие флавоноиды — пигменты, придающие разнообразную окраску растительным тканям. Так, антоцианы определяют красную, синюю, фиолетовую окраску цветов, а флавоны, флавонолы, ауроны, халконы — жёлтую и оранжевую. Они принимают участие в фотосинтезе, образовании лигнина и суберина, в качестве защитных агентов в патогенезе растений, вовлечены в регуляцию процессов прорастания семян, а также пролиферации и отмирания (путем апоптоза) клеток удлиняющихся растущих частей растений. Их многообразие объясняется тем, что в растениях большинство из них присутствует в виде соединений с сахарами — гликозидов. Сахарные остатки могут быть представлены моносахаридами — глюкозой, галактозой, ксилозой и др., а также различными ди-, три- и тетрасахаридами. К сахарным остаткам нередко присоединены молекулы оксикоричных и оксибензойных кислот.

Катехины и лейкоантоцианы бесцветны. Они являются родоначальниками конденсированных дубильных веществ.

Под влиянием ферментов флавоноиды расщепляются на сахара и агликоны. В качестве cахаров встречаются D-глюкоза, D-галактоза, D-ксилоза, LT-рамноза и LT-арабиноза, D-глюкуровая кислота.

Естественные функции флавоноидов мало изучены. Предполагалось, что благодаря способности поглощать ультрафиолетовое излучение (330—350 нм) и часть видимого света (520—560 нм) они защищают растительные ткани от избыточной радиации. Окраска цветочных лепестков помогает насекомым находить нужные растения и тем самым способствовать опылению. Флавоноиды являются фактором устойчивости растений к поражению некоторыми патогенными грибами.

Суммарное содержание флавоноидов изменяется в ряду различных местообитаний; на накопление флавоноидных соединений влияние оказывают такие факторы, как степень освещенности и обеспеченности элементами минерального питания, фитоценотическое окружение [82].

1.2.2 Метаболизм флавоноидов в организме животных

Всасывание этих соединений в желудочно-кишечном тракте варьирует в зависимости от их структуры и может изменяться в широких пределах (по некоторым данным от 4% до 60%). В растительном сырье и пищевых продуктах флавоноиды находятся в основном в форме гликозидов, а не агликонов. Данные по их адсорбции в кишечнике неоднозначны, и долгое время считалось, что флавоноиды могут всасываться только в форме агликонов. Однако, недавно было установлено, что в случае кверцетина именно гликозидные формы характеризуются высокой всасываемостью.

Основными системами метаболизма флавоноидов являются ферментативные системы печени и кишечной микрофлоры, однако и другие ткани, в частности, стенки тонкого кишечника и почки, по–видимому, тоже могут участвовать в этих процессах. Поступившие в печень флавоноиды подвергаются глюкуронидной и сульфатной коньюгации с образованием глюкуронидов и эфиров серной кислоты, а в ряде случаев и О–метилированию (рис.3). Невсосавшиеся флавоноиды подвергаются в кишечнике биодеградации под действием кишечной микрофлоры. Основные процессы на этом этапе — гидролитическое расщепление гликозидов и коньюгатов, а также деструкция бензольных ядер в агликонах с образованием в качестве метаболитов различных гидрокси– и метоксипроизводных ароматических кислот — фенилпропионовой и коричной, которые экскретируются с мочой. По–видимому, с мочой выводятся и коньюгаты флавоноидов.

Флавоноиды обладают капилляроукрепляющим, противовоспалительным, антиаллергическим, антибактериальным и противовирусным эффектами. Они оказывают спазмолитическое действие, в том числе на сосуды сердца и головного мозга, положительно влияют на обменные процессы в миокарде, обладают антиаритмическим действием, тормозят агрегацию тромбоцитов и их адгезию к эпителию сосудистой стенки, нормализуют реологию крови, проявляют антиатеросклеротическое и антигипертензивное, противоязвенное и гепатопротекторное действие. Известны флавоноиды, регулирующие гормональный баланс организма, влияя на уровень кортикоидных гормонов и катехоламинов и проявляя эстрогеноподобную активность (это характерно прежде всего для семейства изофлавоноидов — фитоэстрогенов) (Медисоя, Артемида). Ряд флавоноидов обладает антимутагенным и антиканцерогенным действием. Соединения этого класса влияют на состояние иммунной системы, модулируя функцию ее различных звеньев. Столь широкий спектр фармакологической активности флавоноидов определяется их регулирующим и модулирующим действием на ключевые функциональные системы клеток, органов и тканей организма, что проявляется как в локальном, так и в системном ответах организма.


Рис.3 Метаболизм дигидроквертецина.

1.3 БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЛАВОНОИДОВ

1.3.1 Антиоксидантная активность флавоноидов

Одно из более известных свойств флавоноидов – это их превосходная антирадикальная активность, что и используется при снижении действия АФК при инфекциях, воспалении, ожогах или лучевом поражении.

Реакция флавоноидов с АФК характеризуется высокими скоростями, составляющими для OH-радикала – 5х108М-1с-1, для перокисного радикала липидов – 0,18х108 М-1с-1 (кверцетин), несколько ниже для супероксид аниона – 4х104 М-1с-1 (катехин).

Флавоноиды легко и необратимо окисляются до п-гидрохиноновой формы, которая далее обратимо может окисляться до п-хинона. Последний легко полимеризуется в не растворимое соединение. Окисление флавоноидов катализируется ионами тяжелых металлов и под действием света. Промежуточные формы окисления флавноидов могут являться токсичными для клеток, а в процессе их взаимопревращения в ряде случаев образуются АФК (рис. 4).

Рис.4 Окислительно-восстановительные превращения кверцетина (MetodiewaD, et.al., 1999; Меньшикова Е.Б., и др., 2006).

Тем не менее, флавоноиды считают одними из наиболее значимых антиоксидантов, антиоксидантная активность которых возрастает в присутствии аскорбиновой кислоты. Другой причиной высокой антиоксидантной активностифлавоноидов, может быть их ингибирующая активность ряда ферментов, включая гидролазы, например фосфолипазы, оксидоредуктазы, например избирательно ингибируют COX1 или COX2, связанные с воспалительным и репарационным ответами соответственно, ДНК-синтетазы, РНК-полимеразы, фосфатазы, фосфокиназы, оксигеназы, и оксидазы аминокислот. В некоторых случаях, тип ингибирования конкурентный, но чаще это аллостерическое ингибирование. Многие флавоноиды также способны ингибировать цАМФ и цГМФ фосфодиестеразы, в результате чего увеличивается уровень цАМФ, участвующего в различных каскадах. Многочисленные экспериментальные исследования в водных системах позволили выявить следующие наиболее важные для антирадикальной активности структурные элементы молекул флавоноидов: 1) две ОН-группы в положениях СЗ' и С4', 2) двойная связь между 2 и 3 атомами углерода, желательно совместно с карбонильной группой в положении С4 и 3) ОН-группы в положениях СЗ и С5 совместно с карбонильной группой [10].

В молекулах флавоноидов ОН-группа в положении С4' представляет собой наиболее предпочтительную мишень для радикальной атаки, при этом наличие ОН-групп у соседнего атома углерода СЗ' (катехоловая структура) или СЗ' и С5' (галловая структура) облегчает отрыв атома водорода. Между соседними гидроксилами кольца В образуются водородные связи, поэтому соединения, имеющие такие структуры, характеризуются низким окислительным потенциалом и относительно легко образуют радикалы [19, 76]. Кроме того, присутствие opтo-дигидроксильной структуры приводит к большей делокализации неспаренного электрона и повышает стабильность феноксилыюго радикала [10]. Синтезированные на структурной основе флавона соединения, не содержащие ОН-групп в В-кольце, не проявляли существенной антиоксидантной активности в отношении окисления липидных липосом при индукции ионами Fe2+, Fe3+ и 2,2'-азобис(2-амидинопропан)дигидрохлоридом [5]. Катехоловые структуры также эффективно связывают ионы металлов переменной валентности, препятствуя тем самым их вовлечению в реакции разложения гидроперекисей. Прежде всего это касается катехоловых структур В-кольца, однако при Fe +- и Ре3+-индуцированном окислении, так же, как в отношении ОН-радикалов в реакции Фентона и пероксинитрита, выраженный ингибирующий эффект дают соединения, содержащие ОН-группы в положениях С7 и С8 или С5 и С6 [5, 17, 40]. Замена ОН-групп в положениях С5, С7 или СЗ на O-D-глюкозу приводила к снижению способности флавоноидов ингибировать перекисные и ОН-радикалы, а также ONOO- [40].