Смекни!
smekni.com

Структурно-функциональная характеристика клеточной мембраны (стр. 7 из 8)

1. Кратковременное повышение возбудимости в начале развития ПД, когда уже возникла некоторая деполяризация клеточной мембраны. Если деполяризация не достигает критической величины, то регистрируется локальный потенциал. Если же деполяризация Достигает £кр, то развивается ПД. Возбудимость повышена, потому что клетка частично деполяризована, мембранный потенциал приближается к критическому уровню, открывается часть потенциалчувствительных быстрых Na-каналов. При этом достаточно небольшого увеличения силы раздражителя, чтобы деполяризация достигла Екр, при которой возникает ПД.

2. Фаза абсолютной рефрактерности — это полная не возбудимость клетки (возбудимость равна нулю), она соответствует пику 'Щ и продолжается 1—2 мс; если ПД более продолжителен, то более продолжительна и абсолютная рефрактерная фаза. Клетка в этот период времени на раздражения любой силы не отвечает. Не возбудимость клетки в фазы деполяризации и инверсии (в первую ее половину — восходящая часть пика ПД) объясняется тем, что потенциалзависимые w-ворота Na-каналов уже открыты и Na* быстро поступает в клетку по всем открытым каналам. Те ворота Na-каналов, которые еще не успели открыться, открываются под влиянием деполяризации, т.е. уменьшения мембранного потенциала. Поэтому дополнительное раздражение клетки относительно движения Na+ в клетку ничего изменить не может. Соответственно ПД либо совсем не возникает при раздражении, если оно мало, либо возникает максимально, если достаточно сильное раздражение (пороговое или сверхпороговое). В период нисходящей части фазы инверсии и реполяризации клетка невозбудима, потому что закрываются инактивационные ворота Na-каналов, в результате чего клеточная мембрана непроницаема для Na+, и открываются уже в большом количестве К-каналы, К+ быстро выходит из клетки, обеспечивая нисходящую часть фазы инверсии и реполяризацию. Абсолютная рефрактерная фаза продолжается в период реполяризации клетки до достижения уровня мембранного потенциала примерно Екр± 10 мВ.

Абсолютный рефрактерный период ограничивает максимальную частоту генерации ПД. Если абсолютный рефрактерный период завершается через 2 мс после начала ПД, клетка может возбуждаться с частотой максимум 500 имп/с. Существуют клетки с еще более коротким рефрактерным периодом, в которых возбуждение может в крайних случаях повторяться с частотой 1000 имп/с. С такой частотой могут возбуждаться нейроны ретикулярной формации ЦНС, толстые миэлиновые нервные волокна.

3. Фаза относительной рефрактерности — это период восстановления возбудимости клетки, когда сильное раздражение может вызвать новое возбуждение. Относительная рефрактерная фаза соответствует конечной части фазы реполяризации (начиная примерно от Екр ± 10 мВ) и следовой гиперполяризации клеточной мембраны, если она имеется. Пониженная возбудимость является следствием все еще повышенной проницаемости для К+ и избыточным выходом К+ из клетки. Поэтому, чтобы вызвать возбуждение в этот период, необходимо приложить более сильное раздражение, так как выход К+ из клетки препятствует ее деполяризации. Кроме того, в период следовой гиперполяризации мембранный потенциал больше и, естественно, дальше отстоит от критического уровня деполяризации. Если реполяризация в конце пика ПД замедляется, то относительная рефрактерная фаза включает и период замедления реполяризации, и период гиперполяризации, т.е. продолжается до возвращения мембранного потенциала к исходному уровню после гиперполяризации. Продолжительность относительной рефрактерной фазы вариабельна, у нервных волокон она невелика и составляет несколько миллисекунд.

4. Фаза экзальтации — это период повышенной возбудимости. Он соответствует следовой деполяризации. В некоторых клетках, например в нейронах ЦНС, возможна частичная деполяризация клеточной мембраны вслед за гиперполяризацией. Очередной ПД можно вызывать более слабым раздражением, поскольку мембранный потенциал несколько меньше обычного, и он оказывается ближе к критическому уровню деполяризации, что объясняют повышенной проницаемостью клеточной мембраны для ионов Na+. Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность.

Лабильность, или функциональная подвижность, — скорость протекания одного цикла возбуждения, т.е. ПД. Лабильность ткани зависит от длительности ПД: лабильность, как и ПД, определяете скоростью перемещения ионов в клетку и из клетки, которая, i свою очередь, зависит от скорости изменения проницаемости клеточной мембраны. При этом особое значение имеет длительность! рефрактерной фазы: чем больше рефрактерная фаза, тем ниже лабильность ткани.

Мерой лабильности является максимальное число ПД, Komopot ткань может воспроизвести в 1 с. В эксперименте лабильность исследуют в процессе регистрации максимального числа ПД, которое может воспроизвести клетка при увеличении частоты ритмического раздражения.

Лабильность различных тканей существенно различается. Так лабильность нерва равна 500 — 1000 имп/с, мышцы — около 200 имп/с, нервно-мышечного синапса — порядка 100 имп/с. Лабильность ткани понижается при длительном бездействии органе и при утомлении, а также в случае нарушения иннервации.

Следует отметить, что при постепенном увеличении частоты ритмического раздражения лабильность ткани повышается, т. е. ткань отвечает более высокой частотой возбуждения по сравнению с исходной частотой. Это явление было открыто в 1923 г. А. А. Ухтомским и получила название усвоение ритма раздражения.

Оценка возбудимости клетки. Аккомодация

Возбудимость клетки изменяется не только в процессе возбуждения, но и при изменении химического состава внеклеточной жидкости (в результате длительной высокой активности клеток отклонения показателей внутренней среды в патологических случаях). Если ПП медленно уменьшается, например при недостатке кислорода или под действием миорелаксантов типа сукцинилхолина, развивается инактивация Na-каналов, и клетка становите невозбудимой. При снижении концентрации ионов Na+ вне клетки этот ион в меньшем количестве входит в клетку, в результате чего снижается ее возбудимость из-за гиперполяризации. Это наблюдается при бессолевой диете, при этом может развиваться мышечная слабость. Повышение внеклеточной концентрации NaH вызывает противоположный эффект типа повышения тонуса сосудов вследствие повышения возбудимости нервно-мышечных элементов. Возбудимость различных тканей сама по себе различна у нервных клеток выше, чем у мышечных, что используется в клинической практике (при выяснении причины двигательных нарушений). Показателями состояния возбудимости ткани являются пороговый потенциал, пороговая сила, пороговое время.

Пороговый потенциал (AV) — минимальная величина, на которую надо уменьшить мембранный потенциал покоя, чтобы вызвать возбуждение (ПД). AV и возбудимость клеток находятся в обратных соотношениях: небольшая величина AV свидетельствует о высокой возбудимости клетки. Если уменьшение мембранного потенциала (частичная деполяризация) на 5 —10 мВ вызывает возникновение ПД, то возбудимость клетки высока. Напротив, большой AV (30 — 40 мВ) свидетельствует о более низкой возбудимости клетки. Однако во всех случаях ПД возникает только при достижении критического уровня деполяризации клеточной мембраны Екр (КУД).

Критический уровень деполяризации Екр (КУД) — это минимальная деполяризация клеточной мембраны, при которой возникает ПД. Дальнейшее раздражение клетки и искусственное снижение ПП ничего не изменяют в процессе возникновения ПД, поскольку деполяризация клетки, достигнув критической величины, сама по себе ведет к открытию потенциалзависимых т-ворот Na-каналов, в результате чего Na+ устремляется в клетку, ускоряя деполяризацию независимо от действия раздражителя. Критический уровень деполяризации клеточной мембраны обычно составляет около —50 мВ. При величине ПП, например, до —60 мВ (Е0), деполяризация (уменьшение ПП на 10 мВ) приведет к достижению £кр (-50мВ) и возникнет ПД. Если ПП равен —90 мВ, то для вызова ПД надо снизить ПП на 40 мВ. В последнем случае возбудимость клетки значительно ниже.

Таким образом, AV= Е0 - Екр.

Соотношения между ДУ, Е0 и Екр: наибольшая возбудимость при наименьшем AV, наименьшая возбудимость при наибольшем AV. AV мало зависит от критического уровня деполяризации Екр, но существенно — от ПП клетки Е0, поскольку Екр, как отмечалось выше, величина довольно постоянная.

Величина ПП изменяется в различных условиях деятельности клетки, вследствие этого изменяется и ее возбудимость, например при изменении концентрации Са2+, рН среды. Когда концентрация Са2+ в среде повышается, клетка становится менее возбудимой, поскольку возрастает мембранный потенциал, вследствие Чего Е0 удаляется от Екр, а когда концентрация Са2+ снижается, возбудимость клетки возрастает, так как мембранный потенциал. Уменьшается, Е0 приближается к Екр. Такое повышение возбудимости лежит в основе синдрома тетании, связанного с дефицитом Са2+ в крови. Изменения содержания ионов Н+ в среде действуют на возбудимость нейронов так же, как изменения концентрации Са2+, что в обоих случаях объясняется изменением величины Е0. Однако если мембранный потенциал снижается медлен-. но, ниже Екр (—50 мВ), например в условиях гипоксии или охлаждения, то клетка становится невозбудимой вследствие инактивации Ка+-каналов и невозможности достичь Екр.

Несмотря на то что ДУ является наиболее точным показателем состояния возбудимости клетки, используется он в эксперименте из-за сложности процедуры реже, чем другие показатели. Чаще всего возбудимость оценивается по пороговой силе раздражителя.

Пороговая сила — наименьшая сила раздражителя. Сила раздражителя — понятие собирательное, оно отражает степень выраженности раздражающего воздействия стимула на ткань. Например, сила электрического тока выражается в амперах (А), температура среды — в градусах (°С), концентрация химического вещества — в миллимолях на 1 л, сила звука — в децибелах (дБ) и т. д. При использовании в качестве раздражителя электрического тока предложенное определение пороговой силы совпадает с понятием «реобаза». Реобаза — это наименьшая сила тока, способная вызвать импульсное возбуждение. Если возбудимость ткани высока, пороговая сила раздражителя мала. Чем выше возбудимость, тем ниже пороговая сила. Большая пороговая сила свидетельствует о низкой возбудимости ткани. При внутриклеточном раздражении пороговая сила электрического тока для различных клеток равна 10~7— 10~9 А. При медленно нарастающей силе раздражителя возбуждение может не возникнуть даже при достижении большой его силы, значительно превосходящей пороговую (закон Дюбуа —Реймона, 1845). Это свидетельствует о том, что возбудимость ткани в таких условиях уменьшается, так как возникает явление аккомодации.