Смекни!
smekni.com

Синергетика как универсальная научная парадигма (стр. 1 из 5)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРО_ИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ им. В.П.ГОРЯЧКИНА»

РЕФЕРАТ

на тему:

«СИНЕРГЕТИКА КАК УНИВЕРСАЛЬНАЯ НАУЧНАЯ ПАРАДИГМА»

Выполнил:

Студентка I курса ИЭФ

Луканина В. А.

Проверил:

Маслов Глеб Николаевич


1.ВВЕДЕНИЕ

В первой трети ХХ столетия механическое мировоззрение, исходящее из представлений о линейности, определенности и однозначности причинно-следственных связей, редукции любого сложного объекта к сумме более простых исходных элементов и выведения из них различных комбинаций всех свойств объекта, потерпело окончательное поражение. Это обнаружилось не только в описании биологических и социальных явлений, но и в фундаменте естествознания – физике. «В классической науке ХIХ века господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию (в энергетическом смысле это и означало неупорядоченность или хаос)»1. Основанная на античных традициях поиска первокирпичиков Мироздания, физика изучала, главным образом, структуру и свойства объекта, наиболее существенные взаимосвязи между его отдельными элементами. Однако объекты природы нельзя представить в виде простой суммы отдельных элементов, они гораздо сложнее. «К описанию объекта природы не всегда применимы классические модели и представления, ибо мир является неделимым целым, сетью отношений, сетью взаимосвязанных и взаимообусловленных процессов, которые затрудняются познать и адекватно описать не только классическая, но и неклассическая науки»2. Классическая наука может объяснить лишь, как из порядка возникает хаос, чем обусловлены взрывы звезд, разрушение планет, старение и смерть организмов, распад цивилизаций.

1 Дубнищева Ф.М.: Концепция современного естествознания.- М.: Юнити, 1998, стр.231

2 Е.Н.Князева: Законы эволюции и самоорганизации сложных систем. -Наука, 1994,стр65

3 В.П.Ратников: Концепция современного естествознания: учебник -ЮНИТИ, 1997, стр.125

Эта направленность процессов связывается с ростом энтропии в изолированных системах и стремлением ее к некоторому максимуму, при котором система переходит в состояние хаоса. «Из хаоса, утверждали древние греки, Вселенная родилась, в хаос же, по предположению классической термодинамики, и возвратится»3.

При подготовке этого реферата у меня возник любопытный вопрос: если Вселенная эволюционирует только к хаосу, то как она могла возникнуть и сорганизоваться до нынешнего упорядоченного состояния? Но этим вопросом классическая термодинамика (как раздел физики) не задавалась, ибо сформировалась в эпоху, когда не стационарный характер Вселенной не обсуждался. «В это время единственным немым укором термодинамике служила дарвиновская теория эволюции»1. Ведь предполагаемый ею процесс развития растительного и животного мира характеризовался его непрерывным усложнением, нарастанием высоты организации и порядка. Зарождаются, растут и усложняются организмы, появляются их новые виды, более приспособленные к среде обитания, возникают новые звездные системы и новые цивилизации; беспорядочная группа рыб почти мгновенно превращается в косяк, птицы собираются в стаю, при этом и птицы в стае, и рыбы в косяке действуют столь синхронно, как будто это единый целостный организм. Живая природа почему-то стремится прочь от хаоса. Налицо явная несостыковка законов развития живой и неживой природы.

«Как получается, что система самопроизвольно переходит из состояния хаоса, наиболее вероятного и выгодного с энергетической точки зрения, в состояние порядка, менее вероятного и менее выгодного (с более высокой энергией)? Как и за счет чего происходит ее самоорганизация (самоупорядочение)?»2. Этими вопросами задавались ученые из разных областей естествознания, разработанные классической и неклассической наукой познавательные модели не могли ответить на эти вопросы. В очередной раз естественные науки оказались в тупике и были поставлены перед необходимостью перехода к новым качественным представлениям об окружающем мире, что в немалой степени способствовало возрастанию роли комплексных исследовательских программ в организации научных исследований. Другая важнейшая причина поиска нового подхода к его изучению лежит в области современной техники – проблем разработки средств получения, хранения и передачи информации, создания различных систем управления, регулирования и т.д.

«Отказ от механистической методологии и практические нужды общества потребовали поиска новых концепций и идей, учитывающих принципиальную сложность исследуемых объектов и ориентированных на познание их целостности и системных качеств»1. В числе первых научных дисциплин, поставивших эту проблему стали экономика, биология, психология и лингвистика. Но подходы к ее решению были найдены при исследовании поведения физических и химических систем. В процессе разрешения этой проблемы и сформировалась постнеклассическая наука. «Она акцентирует внимание на исследовании всей совокупности иерархий систем Мироздания как взаимосвязанной целостности или сети взаимодействующих элементов. Объект ее исследования – процесс развития, общие принципы самоорганизации и эволюции сложных систем разного уровня и разной природы, особенности смены качественных состояний, механизмы, динамика и пространственно-временная развертка этого процесса»2.

Однако речь идет не только об утверждении какой-то новой концепции, претендующей на общенаучное значение, а о создании новой познавательной модели, о новом направлении исследовательской деятельности, о выработке новой системы принципов научного мышления и нового категориального аппарата, о необходимости разработки и использования нового комплексного подхода к исследованию объектов и явлений. Все это было объединено и получило термин, введенный Г. Хакеном, «синергетика». «Синергетика – это некоторый междисциплинарный подход. В отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения»3.

1 В.Н.Михайлевский: Диалектика формировния совр. науч. Картины мира.-Л.:ЛГУ, 1989,с.45

2 Ф.М.Дягилев: Концепция современного естествознания.-М.:Юнити,1998,стр.92


2.ОСНОВНАЯ ЧАСТЬ

2.1 Характеристики самоорганизующихся систем

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом: «Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную и функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру и функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки»1. Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присуще природе,- систем, способных к самоорганизации, саморазвитию.

Основные свойства самоорганизующихся систем, по мнению Г. Хакена являются:

«1) исследуемые системы состоят из нескольких или многих одинаковых или разнообразных частей, которые находятся во взаимодействии друг с другом;

2) системы являются нелинейными;

3) речь идет об открытых системах, далеких от теплового равновесия;

4)системы нестабильны;

5)в них происходят качественные изменения;

1 Ю.Л.Климонтович: Без формул о синергетике.- Минск, 1986,стр.48

2 Концепция самоорганизации: становление нового образа мышления.- М.,1994, стр.36

3 Г.Николис, И.Пригожин: Познание сложного.- М., 1990, стр.84

6)в этих системах обнаруживаются эмерджентные (т.е. вновь возникшие) новые качества;

7)системы подвержены внешним и внутренним колебаниям;

8)возникают пространственные, временные, пространственно-временные или функциональные структуры;

9)структуры могут быть упорядоченными или хаотичными;

10)во многих случаях возможна математизация»2

Рассмотрим основные из этих свойств: открытость, линейность и диссипативность.

2.1.1 Открытость

Объект изучения классической термодинамики – закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией. Напомним, что центральным понятием термодинамики является понятие энтропии. Оно относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой. Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом, в закрытой системе энергия сохраняется, хотя и может приобретать различные формы. 1

Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно второму началу термодинамики, запас энергии во Вселенной иссякает, а вся Вселенная приближается к «тепловой смерти».

И.Пригожин, И.Стенгерс: Порядок из хаоса.- М.,1986, стр.87

2 П.У.Эткинс:Порядок и беспорядок в природе.-М., 1986, стр.39

«Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии»1. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. «По мере того как иссякает запас энергии возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее»2.