Смекни!
smekni.com

Научные картины мира (стр. 2 из 2)

В результате многочисленных исследований электрических явлений, предпринятых в 18-19 вв. был получен ряд важнейших законов.

Закон сохранения электрического заряда: в электрически замкнутой системе сумма зарядов есть величина постоянная.

Закон взаимодействия точечных зарядов, или закон Кулона:

, где e - относительная диэлектрическая проницаемость среды (в вакууме e = 1). Силы Кулона существенны до расстояний порядка 10-15 м. На меньших расстояниях начинают действовать ядерные силы.

В 19 веке в науку вошло понятие поля. Начало было положено в работах М.Фарадея. Поле неподвижных зарядов получило название электростатического.

Открытие Эрстеда. Природа магнетизма оставалась неясной до конца 19 в., а электрические и магнитные явления рассматривались независимо друг от друга, пока в 1820 г. датский физик Х. Эрстед не открыл магнитное поле у проводника с током. Так была установлена связь электричества и магнетизма. Силовой характеристикой магнитного поля является напряженность. В отличие от незамкнутых линий электрического поля силовые линии магнитного поля замкнуты, т.е. оно является вихревым.

Законы Ома, Джоуля-Ленца: важнейшими открытиями в области электричества явились открытый Г. Омом закон цепи электрического тока I=U/R, а также закон Джоуля-Ленца для количества тепла, выделяющегося при прохождении тока по неподвижному проводнику за время t: Q = IUT.

Работы М.Фарадея. Исследования английского физика М.Фарадея придали определенную завершенность изучению электромагнетизма. Он открыл закон электромагнитной индукции. (Суть закона: изменяющееся магнитное поле приводит к возникновению ЭДС индукции). Работая над исследованием электромагнитной индукции, Фарадей приходит к выводу о существовании электромагнитных волн. Позже, в 1831 г. он высказывает идею об электромагнитной природе света.

Одним из первых, кто оценил работы Фарадея и его открытия, был Д.Максвелл, который разработал теорию электромагнитного поля, которая значительно расширила взгляды физиков на материю и привела к созданию электромагнитной картины мира (ЭМКМ). [1]

Теория электромагнитного поля Д. Максвелла

Теорию поля Д. Максвелл разрабатывает в своих трудах «О физических линиях силы» и «Динамическая теория поля.

Суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введена новая реальность – электромагнитное поле. Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. В последствии Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн.

Разработав ЭМКМ, Максвелл завершил картину мира классической физики («начало конца классической физики»). Теория Максвелла является предшественницей электронной теории Лоренца и специальной теории относительности А. Эйнштейна.

Электронная теория Лоренца.

Голландский физик Г. Лоренц считал, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. Лоренц высказал в этой связи свои представления об электронах, т.е. крайне малых электрически заряженных частицах, которые присутствуют во всех телах.

В 1987 г. был открыт электрон, и теория Лоренца получила свою материальную основу. Совместно с немецким физиком П. Друде Лоренц разработал электронную теорию металлов. [2]

1. Квантово – полевая картина мира

В основе современной КПКМ лежит новая физическая теория – квантовая механика, описывающая состояние и движение микрообъектов. Она является базой для развития современного естествознания.

В основе квантовой механики лежат фундаментальные идеи о квантовании физических величин и корпускулярно-волновом дуализме.

Формирование идеи квантования физических величин

Определение: физические величины, которые могут принимать лишь определенные дискретные значения, называются квантованными. А само их выражение через квантовые числа называется квантованием. Сама идея квантования сформировалась на основе ряда открытий в конце 19-го – начале 20-го века. Рассмотрим основные из них.

Открытие электрона. В 1897 г. был открыт электрон. Его заряд оказался наименьшим, элементарным. Заряд любого тела равен целому числу элементарных зарядов.

Тепловое излучение. Во второй половине 19 века в результате исследования теплового излучения был открыт ряд законов: Кирхгофа, Стефана-Больцмана, Вина. Однако из теории, основанной на традиционных представлениях об электромагнитных излучениях, следовало, что энергия теплового излучения на всех частотах равнялась бесконечности, что противоречило закону сохранения энергии.

В 1900 г. Макс Планк для выхода из этой ситуации предложил следующую гипотезу (впоследствии названную квантовой гипотезой Планка): электромагнитное излучение испускается отдельными порциями – квантами, величина которых пропорциональна частоте излучения. Гипотеза Планка фактически стала началом новой физики – квантовой физики.

Таким образом, если в классической физике считалось, что энергия может изменяться непрерывно и принимать любые, сколь угодно близкие значения, то согласно квантовым представлениям, она может принимать лишь дискретные значения, равному целому числу квантов энергии.

В 1905 г. А. Эйнштейн, приняв гипотезу Планка, расширил ее, предположив, что свет не только излучается квантами, но и распространяется и поглощается тоже квантами (названными впоследствии фотонами). Таким образом, свет представляет собой поток световых частиц – фотонов.

Корпускулярно-волновой дуализм света и вещества.

В истории развития учения о свете сменяли друг друга корпускулярная теория света (Ньютон) и волновая (Р. Гук, Ч. Гюйгенс, Т. Юнг, Ж. Френель). В 70-х годах после утверждения теории Максвелла под светом стали понимать электромагнитную волну.

В начале 20-го века на основе экспериментов было неопровержимо доказано, что свет обладает как волновыми, так и корпускулярными свойствами. Было также обнаружено, что в проявлении этих свойств существуют вполне определенные закономерности: чем меньше длина волны, тем сильнее проявляются корпускулярные свойства света.

В 1924 г. Л. де Бройль выдвинул гипотезу: корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы, имеющие конечный импульс Р, обладают волновыми свойствами. Так в физике появилась формула де Бройля , где m – масса частицы, V – ее скорость, h – постоянная Планка. При проявлении у микрообъекта корпускулярных свойств его волновые свойства существуют как потенциальная возможность, способная при определенных условиях перейти в действительность.

По современным представлениям квантовый объект – это не частица, не волна. Квантовый объект – это нечто третье, не равное простой сумме свойств частицы и волны. Но, поскольку сведения об объекте и его характеристиках мы получаем в результате взаимодействия с прибором, то и описывать его приходится в классических понятиях, т.е. используя понятия волны и частицы.

Принцип дополнительности. Принцип дополнительности, как общий принцип познания может быть сформулирован следующим образом: всякое истинное явление природ требует для своего определения, по крайней мере, двух взаимоисключающих дополнительных понятий.

Соотношения неопределенностей Гейзенберга

Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики. В классической механике всякая частица движется по определенной траектории и всегда имеет точные значения координаты, импульса, энергии. По-другому обстоит дело с микрочастицей. Микрочастица, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно точных значений координаты и импульса. Меру этой неопределенности в значениях координаты, импульса, энергии и времени нашел Гейзенберг.

Это положение связано с так называемым принципом соответствия, имеющим важное философское и методологическое значение. Принцип соответствия может быть сформулирован следующим образом: Теории, справедливость которых была экспериментально установлена для определенной группы, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий.

Как и все предшествующие картины Мира, КПКМ представляет собой процесс дальнейшего развития и углубления знаний о физических явлениях. Процесс становления и развития КПКМ продолжается и прошел уже ряд стадий: 1) утверждение корпускулярно-волновых представлений о материи;

2) изменение методологии познания и отношения к физической реальности;

Все рассмотренные ранее картины мира отличались своей трактовкой таких фундаментальных понятий как пространство, время, движение, принцип причинности, взаимодействия. [1]

Список литературы:

1. Дягилев Ф.М. Концепции современного естествознания. - М.: Изд. ИЭМПЭ, 1998.

2. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.

3. Кун Т. Структура научных революций М.: Мир, 1997

4. Ильченко В.Р. На перекрестках физики, химии и биологии. М.: Просвещение 1998