При идеальных условиях выделения внутриклеточные компоненты можно было бы получать в том же виде и количестве, в которых они существуют в интактных клетках, не нарушая таким образом их морфологической структуры и не изменяя их активности. Однако большинство существующих в настоящее время методов фракционирования всем этим требованиям не удовлетворяет, и при выборе того или иного метода часто приходится иметь в виду, что в ходе фракционирования за счет сохранения морфологической структуры клетки может нарушиться ее активность, и наоборот.
Выбор ткани для фракционирования определяется конкретными условиями эксперимента и объектом исследования. Ткани и клетки различных органов различаются по составу, хрупкости и плотности,- что в свою очередь определяет выбор того или иного метода выделения. Печень, например, является идеальным объектом для изучения функционирования митохондрий, поскольку именно в клетках печени митохондрии содержатся в особенно больших количествах. Ткань тимуса (зобной железы) чаще других тканей используется для выделения ядер, так как ядра тимоцитов составляют до 50% клеточной массы.
Клетки различных тканей обычно гетерогенны по форме и размерам; подобная гетерогенность точно в такой же степени характерна и для выделяемых из гомогенатов тканей субклеточных фракций. В этой связи химический анализ выделенных фракций может дать лишь усредненные данные о составе этих фракций. Различные органы животных отличаются друг от друга и по содержанию в них крови и соединительной ткани: чем больше соединительной ткани содержится в органе, тем хуже ткань поддается гомогенизации и тем труднее поэтому выделить из нее субклеточные компоненты.
9.1 Приготовление гомогенатов тканей и клеток
Гомогенизация приводит к потере морфологических и биохимических свойств, характерных для данной ткани. Такая потеря не существенна, если гомогенизация проводится как предварительная стадия выделения из ткани какого-либо химического соединения.
Однако в тех случаях, когда изучают метаболические процессы, морфологическая и биохимическая целостность ткани должна быть сохранена в максимальной степени. Целью гомогенизации, которая, к сожалению, по-прежнему остается эмпирическим методом, является разрушение тканей, клеточных стенок и (или) мембран и высвобождение клеточного содержимого. Для этого применяются самые разнообразные методы и приборы, хотя лежащие в их основе принципы не всегда ясны. Лишенная прочной теоретической базы и необходимого арсенала стандартных методов, гомогенизация представляет собой скорее искусство, чем науку. В силу того, что различные ткани в значительной степени отличаются одна от другой как по хрупкости определенных клеточных органелл, так и по устойчивости клеток и тканей к разрушению, при гомогенизации любого биологического материала всякий раз неизбежно возникают специфические проблемы, которые можно разрешить только путем проб и ошибок. В основном гомогенизация применяется как стадия, предшествующая разделению клеточных компонентов, которая дает возможность установить внутриклеточную локализацию метаболических процессов. Гомогенаты успешно используются и при изучении поглощения и метаболизма соединений в тех случаях, когда доставка их в интактные клетки затруднена в силу недостаточной проницаемости мембран.
9.2 Выбор среды суспендирования
Объективных критериев для выбора той или иной среды суспендирования при гомогенизации не существует. Некоторые рекомендации можно почерпнуть из литературы, однако окончательный выбор всегда зависит от результатов предварительных опытов с применением различных сред.
Обычно для создания в среде необходимого осмотического давления, предохраняющего частицы от набухания и разрыва, применяют сахарозу. Если сахароза затрудняет исследование свойств ферментов, ее заменяют маннитом. Существует целый ряд индивидуальных прописей по сохранению целостности частиц и защите ферментов от инактивации. Рекомендуемые растворы различаются по концентрации сахарозы или присутствию таких веществ, как ЭДТА, глутатион, р-меркаптоэтанол и т. д. Иногда вместо солевых растворов используют неионные среды, так как, например, в гомогенатах печени солевые растворы вызывают агглютинацию полиморфно-ядерных лейкоцитов и органелл. При работе с гомогенатами селезенки, Наоборот, сахароза (0,25 М) обладает более выраженным агглютинирующим действием, чем КС1 (0,2 М).
Для выделения ядер и хромосом пользуются лимонной кислотой, которая обладает способностью подавлять активность «нейтральных» дезоксирибонуклеаз.
Для выделения ядер применяют растворы глицерина и этиленгликоля, а для выделения пластид из клеток растений — карбоваксы (полимеры этиленгликоля). Хлоропласты обычно выделяют в средах, содержащих не сахарозу, а маннит и сорбит.
Анализ ферментов в растительных экстрактах иногда значительно усложняется в силу того, что в процессе гомогенизации выделяется большое количество фенолов, которые образуют водородные связи с карбонильными группами, участвующими в образовании пептидных связей белков, а это, по-видимому, вызывает инактивацию многих ферментов. Во избежание этого к экстрактам добавляют поливинилпирролидон, образующий с фенолами нерастворимый комплекс, который затем удаляют из экстракта фильтрованием.
Для выделения субклеточных органелл можно применять неводные среды. Суспендирующая среда в этом случае представляет собой смесь легкого и тяжелого органических растворителей, например смесь эфира с хлороформом или бензола с четыреххлористым углеродом. Плотность среды можно изменять таким образом, чтобы при последующем центрифугировании исследуемые частицы либо всплывали на поверхность, либо осаждались. «Неводное» фракционирование применяют для выделения хлоропластов и лейкоцитов, а также гранул гемосидерина из селезенки. Недостатками этого метода являются нарушение морфологической структуры некоторых видов ткани и инактивация отдельных ферментов органическими растворигелями.
9.3 Способы разрушения тканей и клеток
Для разрушения клеток чаще всего применяют физические методы. Большинство животных клеток разрушается сравнительно легко, однако при разрушении растительных и бактериальных клеток зачастую приходится сталкиваться со значительными трудностями, связанными с наличием клеточных стенок. Физические методы разрушения клеток подразделяются в зависимости от того, происходит ли оно под действием сил трения между клетками и твердыми веществами (растирание клеток с твердыми материалами) или гидродинамически (разрушение клеток в жидких средах).
Растирание клеток с твердыми материалами. В современной модификации этот метод состоит в растирании клеток с песком или абразивным порошком в ступке при помощи пестика. В настоящее время благодаря появлению более мягких способов разрушения этот метод применяется для разрушения животных клеток довольно редко, однако им по-прежнему пользуются для разрушения растительных и бактериальных клеток. Желательно, чтобы абразивные частицы были как можно более острыми и имели такой же размер, что и разрушаемые клетки. Недостаток метода заключается в том, что при разрушении клеток может нарушаться структура наиболее крупных органелл, таких, например, как хлоропласты.
Хорошие результаты дает продавливание клеток, смешанных с абразивными частицами, через пресс Хьюза. Влажные клетки с абразивными частицами помещают в трубку при температуре около —5°С, а затем однократным ударом по поршню, создающим скачкообразное изменение давления, проталкивают клеточную массу через узкое отверстие диаметром около 0,25 мм. Модификацией этого метода является продавливание клеток при температуре —25°С; роль абразивных частиц выполняют в этом случае кристаллы льда. Чтобы добиться максимального разрушения бактериальных клеток, приходится иногда повышать давление до 5,5-107 Па.
Клетки бактерий можно разрушать также и путем механического встряхивания суспензий частиц с абразивным порошком с частотой 300—3000 колебаний в минуту при помощи встряхивателя Микля, в который добавляются мелкие стеклянные бусинки диаметром от 50 до 500 мкм. Однако возникающая при встряхивании сильная вибрация часто вызывает разрушение клеточных органелл.
Разрушение клеток в жидких средах. Разрушение клеток, находящихся в суспензии, происходит либо при вращении лопастей или поршня (блендеры), либо при поступательном движении вверх и вниз поршня или шаров (гомогенизаторы).
Блендеры, как правило, имеют режущие лопасти, вращающиеся с большой скоростью. Количество и конструкция этих лопастей бывают разными, но все они обычно заострены под прямым углом друг к другу, а форма их обеспечивает хорошее перемешивание содержимого сосуда. Суспензию клеток помещают в специальный стакан, который имеет по всей высоте раструбы и в поперечном сечении выглядит как клеверный лист. Для поддержания низкой температуры в процессе гомогенизации стакан помещают в лед. Благодаря особому расположению лопастей и конструкции стакана в ходе фракционирования возникают гидродинамические силы. Метод достаточно универсален и широко применяется для фракционирования клеток, однако следует иметь в виду, что при быстром вращении лопастей гомогенизаторов возникают некоторые нежелательные эффекты.
Большинство гомогенизаторов преставляют собой прибор, состоящий из пестика с ручным (гомогенизаторы Даунса и Тёнбрэка) или механическим (гомогенизатор Поттера—Эльвегёйма) приводом, который вращается или движется вверх и вниз в стеклянном цилиндрическом сосуде. Необходимо следить за тем, чтобы зазор между пестиком и стенками сосуда оставался постоянным, так как скорость разрушения клеток зависит не только от скорости вращения пестика, но и от соотношения между радиусами пестика и сосуда. Сосуд закрепляется неподвижно,- поэтому скорость вращения суспензии изменяется от минимальной у его стенок до максимальной у поверхности пестика; следовательно, чем меньше расстояние между этими поверхностями, тем выше градиент скорости. Возникающие при высоких скоростях силы достаточны для разрушения довольно тонких мембран животных клеток; растительные и бактериальные клетки при этом не разрушаются.