Смекни!
smekni.com

История развития генетики 2 (стр. 2 из 5)

Работы Кельрейтера и Найта развивали далее и многие другие ботаники. О. Сажрэ (1763-1851) получил известность как создатель новых сортов фруктовых деревьев и овощных культур. Впервые в истории гибридизации он стал изучать отдельные признаки растений, подбирая для скрещивания альтернативные пары (мякоть желтая – белая, кожура сетчатая – гладкая и др.). Он установил отсутствие смешения изучаемых признаков у дынь: признаки у потомков не исчезали, а только перераспределялись среди них. Признаки, которые не исчезают, а проявляются во втором поколении гибридов, были позже названы Менделем рецессивными.

Итак, во второй половине XIX века ученые и практики из многих стран, занимаясь гибридизацией различных видов растений, правильно подметили такие особенности наследования признаков как доминирование, единообразие гибридов первого поколения, расщепление и комбинаторика признаков во втором поколении, одинаковое проявление признаков в реципрокных скрещиваниях.[1]

Фактически всех их можно считать непосредственными предшественниками Г. Менделя. Однако только Мендель сумел провести глубоко продуманные и спланированные эксперименты. Уже в первоначальной стадии работы он понял, что в эксперименте нужно выполнить два условия: растения должны обладать константно различающимися признаками и гибриды должны быть защищены от влияния чужой пыльцы.[3]

Метод, открытый Менделем, состоял в том, что он подвергал анализу наследование отдельных пар альтернативных качеств у растений (цвет или форма горошин). Простота и четкость методики гибридологического эксперимента, возможность применения количественного вариационно-статического подхода и алгебраических символов в анализе его результатов – все это сделало метод Менделя новым этапом в развитии биологического познания вообще и генетики в частности.[4]

Таким образом, заслугой Менделя является то, что из непрерывной характеристики растений он выделил дискретные признаки, выявил константность и контрастность их проявления, а также ввел понятие доминантности и рецессивности. Все эти приемы впоследствии вошли в гибридологический анализ любого организма.

В результате скрещивания растений, обладающих двумя парами контрастных признаков, Мендель обнаружил, что каждый из них наследуется независимо от другого. Признаки контрастны, не теряются при гибридизации и проявляются в последующих поколениях.

Эти краеугольные закономерности наследования признаков, названные через много лет «законами Менделя», неизменно проявляются у любых живых организмов, вступающих в скрещивание, а также у их потомства, т.е. у всего живого. Обнаруженные правила наследования легко описываются математическими символами и схемами, позволяющими задолго до появления потомства точно предсказывать его характеристики. В биологии, таком образом, впервые появилась наука, обладающая предсказательной силой. И тем не менее работа Менделя не заинтересовала современников и не повлияла на распространенные в конце XIX в. представления о наследственности.

Свою работу «Опыты над растительными гибридами» Мендель опубликовал в 1866 г. в журнале «Труды Брюннского общества испытателей природы». С тех пор вокруг этой статьи ведутся дискуссии. Обсуждаемые вопросы:

1) Осталась ли работа незамеченной современниками и неизвестной вплоть до 1900 г.?

Обычно считается, что работа Менделя не была известна современникам, так как нигде не обсуждалась с 1866 по 1900 г. Известно, однако, что Брюннское общество испытателей природы обменивалось своими изданиями со 133 научными академиями и научными обществами Европы и Америки. Кроме того, Мендель получил из журнала 40 оттисков, которые разослал биологам, которым это могло быть интересно. Однако и это не помогло. Как вспоминал Ф.Г. Добржанский в 1964 г., в середине XX в. один из крупных ботаников, разбирая библиотеку отца, тоже крупного ботаника, нашел оттиск статьи Менделя. Его страницы не были даже разрезаны. В 1867 г. в основном ботаническом журнале того времени - «Flora» - в перечне наиболее важных работ по ботанике приведены полные библиографические данные статьи Менделя. Эта библиографическая справка в журнале «Flora» вызвала значительный интерес у читателей и повышенный спрос на том «Трудов Брюннского общества испытателей природы», в котором была статья Г. Менделя. Из личной переписки Менделя и профессора К. Нэгели (апрель 1867 г.) стало известно, что после доклада Г. Менделя возникла дискуссия, во время которой мнения слушателей разделились. Эта дискуссия была отражена в местных газетах. В целом за период с 1865 по 1900 г. труды Менделя цитировались в научной литературе не менее 11-12 раз. Все это говорит о том, что работа Менделя не была неизвестной или тем более забытой.

2) Читали ли работу Менделя ученые, переоткрывшие его законы, до начала собственных экспериментов?

В современной литературе высказывается все больше сомнений в том, что переоткрыватели законов Менделя не читали его работу до начала своих экспериментов.

3) Понимал ли сам Мендель, что он открыл?

Довольно многие из историков, не находя четких формулировок законов непосредственно в статье Менделя, приходят к выводу, что Мендель не осознавал до конца глубины написанного им. Однако это не так. В письме профессору Муру (Moore) Мендель описывает результаты своих опытов с горохом и сообщает об открытии им двух основных принципов наследования: закона расщепления и закона независимого распределения единиц наследования, названных в письме «элементами».

4) Не слишком ли хорошо результаты экспериментов Менделя удовлетворяют теоретически ожидаемым?

В 1936 г. Р. Фишер опубликовал работу, в которой подверг сомнению результаты уже собственно экспериментов Г. Менделя, полагая, что полученные данные «слишком близки к идеальным соотношениям» (например, при изучении обратных скрещиваний частоты фенотипов практически не отличались от 1:1) и противоречат закономерностям нормального распределения. Фишер фактически обвинил Менделя в том, что последний, заранее зная исследуемую закономерность, умышленно или неумышленно, но «подогнал» экспериментальные данные. В настоящее время некоторые генетики разделяют точку зрения Фишера. По мнению других, главная ошибка Фишера – в неверном использовании математического аппарата postfactum.

5) Есть ли в работе Менделя собственно формулировки законов или же присутствует лишь описание полученных им эмпирических результатов?

В работе Менделя действительно нет формулировок и названий того, что было названо 1-ым и 2-ым законами Менделя. Эти формулировки были даны авторами, переоткрывшими их. Один из крупнейших генетиков современности Ф.Г. Добржанский считает, что «Мендель был одной из наиболее трагических фигур в истории науки. Он должен был чувствовать, что его работа не признана и закончилась провалом. Едва ли он мог предвидеть, что через 16 лет после его смерти его работу переоткроют, а в конце следующего столетия основанная им наука станет одной из центральных в биологии. Пока же, при жизни, Мендель стал подтверждать справедливость своих законов на других видах, в частности, ястребинках. Что и оказалось для него катастрофой. В то время никто не знал, что у этих растений нарушен половой процесс и они дают семена без него. Поэтому никаких результатов на этих видах Мендель получить не мог».

В качестве вывода, можно сказать, что дело не в трудности восприятия работ Менделя или их неизвестности. Просто биологи в 1865 г. были значительно менее подготовлены к тому, чтобы осознать открытие Менделя, чем биологи в 1900 г. эти знания еще не были востребованы ни обществом, ни наукой.

Вторичное открытие законов Менделя в 1900 г. Г. де Фризом в Голландии, К. Корренсом в Германии, Э. Чермаком в Австрии подтвердило представление о существовании дискретных наследственных факторов. Мир уже был готов к восприятию новой науки, и началось ее триумфальное шествие. Справедливость законов Менделя о наследовании проверяли на все новых и новых растениях и животных и получали неизменные подтверждения. На основе исключений из правил быстро развивались новые положения общей теории наследственности. В 1906 г. англичанин У. Бэтсон предложил термин «генетика» (от лат. «geneticos» - относящийся к происхождению, или «geneo» - порождаю, или «genos» - род, рождение, происхождение). В 1909 г. датчанин В. Иогансен предложил термины «ген», «генотип», «фенотип».

Но уже вскоре после 1900 г. встал вопрос: что такое ген и где он в клетке расположен? В 1903 г. немецкий биолог Т. Бовери и студент Колумбийского университета У. Сэттон независимо друг от друга предположили, что гены должны располагаться в хромосомах.

С 1910 г. начинаются эксперименты группы Т. Моргана. Вместе со своими учениками он к середине 20-х гг. сформулировал хромосомную теорию наследственности, согласно которой гены расположены в хромосомах, как бусы на нити; были определены порядок расположения и даже относительные расстояния между генами. Именно Морган ввел в генетические исследования в качестве объекта маленькую плодовую мушку дрозофилу.

Уже в 30-х гг. ученых заинтересовал вопрос: из какого материала построены гены? В 1928 г., а в более развернутой форме в 1935 г. Н.К. Кольцов выдвинул гипотезы о молекулярной организации и матричного синтеза гена. Он исходил из того, что материал хромосомы должен тянуться от одного ее конца до другого. И таким материалом, по его мнению, должна быть молекула белка. Модель привлекла внимание. Идея хромосомы-молекулы произвела глубокое впечатление на генетиков, она объясняла многие явления, но оказалась неверной, поскольку, как позднее выяснилось, наследственным материалом является ДНК.