Імпульсну активність окремих нейронів відводили позаклітинно за допомогою скляних мікроелектродів із опором 10-20 МОм, заповнених розчином NаСІ (3 М). Введення мікроелектрода проводилося через контралатеральну півкулю під різними кутами до горизонтальної стереотаксичної площини таким чином, щоб підхід до досліджуваної ділянки забезпечував найменшу травматизацію структур гіпоталамуса. Гістологічна верифікація точок відведення проводилася згідно з атласом Джаспера та Аймон-Маршана (1954) за стандартною методикою після виготовлення послідовних фронтальних зрізів мозку.
Функціональна ідентифікація нейронів,тобто належність нейронів RPO і переднього гіпоталамуса до термо-, глюко-, осмо- і пресосенситивних, визначалася за їх реакціями, що розвивалися у відповідь на температурні стимули, підвищення рівня глюкози, коливання осмотичного тиску та підвищення системного артеріального тиску. Всі ці вісцеральні стимуляції модулювалися під час експерименту, і основною умовою при функціональній ідентифікації нейронів була невисока інтенсивність гомеостатичних змін (яка укладається у фізіологічні межі), при достатній ефективності дії.
Для функціональної ідентифікації нейронів RPO і переднього гіпоталамуса, як термосенситивнихзастосовувалося локальне нагрівання або охолодження температури шкіри подушечки передньої контрлатеральної (відносно боку відведення) кінцівки тварини, яке здійснювалося за допомогою оригінального комп’ютеризованого термостимулятора, зібраного на базі термоелектричної батареї Пельє. Підвищення або зниження температури поверхні термоелемента, до якої фіксувалася подушечка лапи, здійснювалося у межах від (-)70С до (+)70С щодо фонової температури. Загальна тривалість дії як правило не перевищувала 45с, швидкість наростання (спаду) температури дорівнювала 0,50С ∙с-1. Генералізову термостимуляцію виконували охолодженням усієї поверхні тіла, крім голови, за допомогою прокачування води низької температури через спеціальний теплообмінний кожух, у якому перебувала тварина. Глюкосенситивнінейрони виявлялися за їх реакціями на введення в a.carotisinterna (0,1-0,3) мл 5,5% (0,31М) ізотонічного розчину глюкози. Доза цієї речовини складала 0,06 мМ і викликала збільшення концентрації глюкози в басейні a.carotisinterna в 2,2 раза. Ідентифікація осмосенситивнихнейронів проводилася за їх реакціями на короткострокові коливання осмотичного тиску в кровотоку, які викликалися після інфузій (0,1-0,3) мл 3,0% і (0,2-0,5) мл 0,2% розчину NaCl. При введенні 200 мкл 3,0 % розчину NaCl доза речовини складала 0,1 мМ NaCl і приводила до збільшення осмолярної концентрації в басейні a.carotisinterna до (+)15 мосмол∙л-1 або на 5 % від початкового рівня. При введенні такого ж об'єму 0,2 % розчину NaCl його доза складала 0,03 мМ NaCl, яка при цьому розведенні викликала зниження осмолярної концентрації на (-)4,6 мосмол∙л-1 або на 1,5 % від початкового рівня. Такі дози відповідали фізіологічним змінам у крові. Належність нейронів до системи регуляції гемодинаміки (тобто ідентифікація як пресосенситивних) визначалася за їх реакціями на підвищеннясистемного артеріального тиску. Для цього через катетер, введений в v. femoralis правої лапи інфузувалося (0,1-0,2) мл 0,002 % розчину фенілефрину гідрохлориду. Доза речовини складала (0,65-1,3) мг/кг∙с-1. За цих умов збільшення середнього артеріального тиску щодо початкового рівня, зареєстрованого в a.carotis communis (14,7-17,3) кПа, досягало (4,0-6,7) кПа. Таким чином, приріст артеріального тиску складав приблизно 30%.
Середня доза кожного розчину, який вводився під час стимуляції з темпом інфузії 50 мкл∙с-1, дорівнювала 200 мкл. Введення 200 мкл ізотонічного розчину NaCl (волюм-контроль) не викликало достовірних змін ФІА у жодного з нейронів, які були обрані для аналізу. Щоб уникнути взаємного впливу різних інфузій, контролювали: сумарний об'єм речовин, які вводилися під час кожного експерименту; їх послідовність й інтервали між введеннями. У кожної тварини досліджувалася активність в середньому 7-9 нейронів й проводилося не більше 25 стимуляцій з інтервалами між ними, в середньому, 8-10 хв (не менше 4 хв). Послідовність речовин, які вводилися, носила випадковий характер.
Для подразнення кортикальних структур серійними (із частотою 12,30,100 с-1) стимулами були використані біполярні ніхромові електроди, ізольовані за винятком кінчиків. Міжелектродна відстань становила (1-2) мм; електроди вколювалися в тканину кіркових утворень на глибину (2-3) мм. Сила стимуляції кожної з кортикальних ділянок в 2 рази перевищувала порогову для виникнення викликаних потенціалів. Позиціювання подразнюючих електродів виконувалося за координатами стереотаксичного атласу Рейнозо-Суареца (1961) у прореальній (поле 8), поясній (поле 24) звивинах, піриформній частці (періамігдалярній корі) та гіпокампі (САЗ).
Введення розчинів, вибір каналу та параметрів стимуляції, розрахунки положення кінчика електрода при його переміщенні здійснювалися за допомогою програмно-апаратурного комплексу, створеного та вдосконаленого у нашій лабораторії (Казаков В.Н. та ін., 1992, 2002). Контроль систем життєзабезпечення (моніторинг частоти серцевих скорочень, артеріального тиску, параметрів штучної вентиляції легень, підтримка температури) також здійснювався комп’ютером у відслідковуючому режимі. Активність нейронів реєстрували тільки у тому випадку, якщо фонова імпульсація мала стабільний характер протягом не менше кількох хвилин. Реєстрація здійснювалася на протязі: 30 с – фону, (4-5) с – стимуляції (температурна тривала довше), 60 с – періода післядії.
Статистичному аналізу підлягали два основних параметри ФІА: характер часової структури та середня частота імпульсації. Вірогідність розходжень значення середньої частоти імпульсної активності нейронів, яка розраховувалася до, під час стимуляції, та в період післядії визначалася за допомогою критерію U (Вілкоксона-Манна-Уітні); розходження вважалися значущими при РU<0,05.
Для аналізу характеру часової структури ФІА нейронів був спеціально розроблений статистичний метод дослідження, заснований на критеріальній оцінці рівня значущості відмінності (деклараційний патент на винахід № 3092 UA). За допомогою комп'ютерної програми обчислювали медіану частот у двох епохах: ФІА протягом 30 с й імпульсна активность протягом 30 с відразу після закінчення стимуляції. За гістограмами середньої частоти імпульсної активності нейрона (з біном 1с) розраховували відносне відхилення поточної частоти у кожному біні від медіани частоти у цьому періоді аналізу. Отримані результати відображали на двох додаткових “гістограмах розподілу відхилення” (перша відображала аналіз ФІА, друга – імпульсна активность після стимуляції). Гістограми будували таким чином, щоб частота, яка відповідає середній (тобто відхилення від медіани частот дорівнює нулю) відкладалася у центрі графіка на відмітці ∆0%. Інші крапки, що характеризували відхилення від медіани частот на +10, +20…+100 % розташовувалися на гістограмах відповідно по обидва боки від нульової відмітки. За допомогою кластерного аналізу (методом К-середніх), усі одержані гістограми розподілу відхилення підсумовувалися; і було виділено три варіанти гістограм відхилень, які значно відрізнялися один від одного. Для перших двох варіантів було побудовано теоретичні функції розподілу. За критерієм згоди Пірсона (ч2) при використанні комп’ютерної програми “MedStat” (Лях Ю.Е., Гур’янов В.Г., 2004), порівнювали експериментальні гістограми розподілу відхилення з теоретичними функціями і виявляли рівень значущості відмінності. Якщо гістограма розподілу відхилення імпульсації не була відмінною від теоретичної функції першого чи другого варіанту більш ніж на 5%, то тип такої імпульсації визначався як перший або другий (відповідно). Якщо, одержана гістограма розподілу відхилення значно відрізнялася від обох теоретичних функцій, то тип імпульсації визначався, як третій. Як правило, гістограми розподілу відхилень третього типу ФІА мали кілька виражених мод і нам не вдалося у таких нейронів визначити будь-який один характерний тип гістограм розподілу відхилень.
Результати досліджень та їх обговорення. Позаклітинно відводили ФІА нейронів, зареєстрованих в RPO та прилеглих до неї гіпоталамічних структурах – латеральному і медіальному преоптичних ядрах, зоні bed nucleus stria terminalis, зоні перивентрикулярного гіпоталамічного ядра, зоні супраоптичного ядра, латеральній та дорсомедіальній області переднього гіпоталамуса в межах фронту (10,5-15,5) за атласом Джаспера та Аймон-Маршана (1954). Всього була зареєстрована ФІА 210 нейронів. Із аналізу виключили 63 нейрони, які мали частоту імпульсації нижче 0,2с-1. Відведення ФІА ще від 53 нейронів тривало стабільним недовгий час, і це не дозволило здійснити повну програму тест-стимуляції. Всього, в роботі було оцінено та проаналізовано 1733 реакції нейронів RPO і переднього гіпоталамуса; з них було проаналізовано 577 реакцій нейронів у відповідь на зміни констант гомеостазу, і 1156 реакцій у відповідь на електричні кортикальні подразнення. Розподіл нейронів за вказаними областями переднього гіпоталамуса і RPO знаходився у кореляції з розміром кожної області. В LPO – було зареєстроване 12,8% всіх нейронів, в MPO – 13,8%, в BNST – 8,5%, в області SO – 6,4%, в Ре – 9,5%, в HL 32% нейронів, в aHd – 17%.
Застосування методу критеріальної оцінки ФІА вісцеросенситивних нейронів RPO і переднього гіпоталамуса дозволило виділити три типи ФІА цих нейронів залежно від особливостей їх часової структури, які значно відрізнялися один від одного. У нейронів із першим типом ФІА реєструвалася безперервна і відносно рівномірна імпульсація, зі схожими за тривалістю міжімпульсними інтервалами. Другий тип ФІА нейронів відрізнявся від першого неритмічністю імпульсації з великими та маленькими міжімпульсними інтервалами. У нейронів із третім типом ФІА реєструвалася нерівномірність генерації імпульсів, вони спорадично генерувалися частіше або рідше.