Смекни!
smekni.com

Anatomy Essay Research Paper Overview of Anatomy (стр. 2 из 3)

reticular lamina, a layer of extracellular material containing a fine

network of collagen protein fibers that ?belong to? the underlying

connective tissue. Together the two laminae form the membrane

basement. The basement membrane reinforces the epithelial sheet,

helping it to resist stretching & tearing forces, & defines the epithelial

boundary.

An important characteristic of cancerous epithelial cells is their

failure to respect this boundary, which they penetrate to invade the

tissue beneath.

Innervated but avascular. – Although epithelium is innervated (supplied

by nerve fibers), it is avascular (contains no blood vessels). Epithelial

cells are nourished by substances diffusing from blood vessels in the

underlying connective tissue.

Regeneration. – Epithelium has a high regenerative capacity. Some

epithelia are exposed to friction & their surface cells removed by

abrasion. Others are damaged by hostile substances in the external

environment (bacteria, acid, smoke). As long as epithelial cells receive

adequate nutrition, they can replace lost cells rapidly by cell division.

Classwork (pgs. 115-118) February 16, 1999

?Stratified & Glandular Epithelia?

Stratified Epithelia

Stratified epithelia consists of two or more cell layers.

Stratified Squamous Epithelium – is the most widespread of the

stratified; found in the exterior part of the skin.

Stratified Cuboidal & Stratified Columnar – are rare; usually found in

large ducts & some glands.

Transitional Epithelium – found in the lining of urinary organs.

Transitional epithelium can change shape in order to stretch.

Glandular Epithelia

Epithelium of the glandular type is specialized for secretory activity. All

glands are classified as exocrine or endocrine.

Exocrine glands – discharge their secretory products into ducts (ex.

salivary glands)

Endocrine glands – are ductless; they discharge their secretions

directly: hormones.

Multicellular exocrine glands have two structural elements: ducts &

secretory units. On the basis of their duct structures they are either

simple glands – single unbranched ducts or compound glands – that have a

branched duct. Then they are further described according to their

secretory parts:

Tubular – forms tubes.

Alveolar – small flask like sacs.

Tubuloalveolar – both.

Functional Classifications of Exocrine Glands.

Methods by which they discharge. Three types:

Apocrine Glands – collect their products near the tips of the cell & then

they release into a duct by pinching of (ex. mammary glands).

Holocrine Glands – collect inside the cells & then they rupture (ex.

sedaceous (oil) glands).

Merocrine Glands – discharge directly through the cell membrane (ex.

salivary glands).

Homework (pgs. 119) February 16, 1999

?Unicellular Exocrine Glands?

Unicellular exocrine glands are single cells scattered in am epithelial sheet

amid cells with other functions. They have no ducts. In humans, all such

glands produce mucin, a complex glycoprotein that dissolves in water

when secreted. Once dissolved, mucin forms mucus, a slimy coating that

both protects & lubricates surfaces. The only important unicellular glands

in humans are the goblet cells found sprinkled in the columnar epithelium

cells lining the intestinal & respiratory tracts. Although unicellular glands

probably outnumber multicellular glands, unicellular glands are the less

well known of the two glands types.

Classwork (pgs. 119, 122-126) February 17, 1999

?Connective Tissue?

Connective Tissue is the most abundant tissue. Its major functions are:

Binding & Support

Protection

Insulation & Blood

Transportation

Common Characteristics of Connective Tissue

Common origin – derived from the mesoderm.

Degrees of vascularity; some are vascularized, others are not.

Extracellular matrix – this separates the living cells of the tissue.

Two Classes of Connective Tissue

The first is divided into four groups.

Loose Ordinary Tissue (Areolar) – found between other tissues or

other organs; used in connection; it is a fluid.

Adipose Tissue (Fat) – found under the skin & as padding at various

points. Used for protection, insulation, & a reserve for food.

Reticular Tissue – slender branching of reticular fibers forms the

framework for the spleen, lymph nodes, & bone marrow; look like

little strings that run in all directions.

Dense Fibrous Tissue – tendons & ligaments; they are bundles or

callagenous fibers in parallel rows in a fluid matrix; they are thicker

strings that run in one direction.

The second class of connective tissue contains cartilage – has qualities

intermediate between dense fibrous connective tissue & bone. It is

avascular (no bloods run through it) & has no nerves.

Hyaline Cartilage – is the most abundant tissue type in the body;

provides firm support with some pliability.

Elastic Cartilage – nearly identically like hyaline cartilage, but has

more elastin fibers which gives this tissue a greater tolerance for

repeated bending.

Fibrocartilage – (fibrous cartilage) often found where hyaline

cartilage meets a true ligament or tendon. Found where strong

support & ability to withstand heavy pressure are required.

Homework (pgs. 120-122) February 17, 1999

?Structural Elements of Connective Tissue?

Connective tissues have three main elements: ground substance, fibers, &

cells. Ground substances make up the extracellular matrix. (Note: that the

term matrix indicates the ground substance.)

Ground Substance

Ground Substance – is an amorphous (unstructured) material that fills the

space between the cells & contains the fibers. It is composed of instertitial

fluid, cell adhesion proteins, & proteoglycans. Cell adhesion proteins, a

group that includes fibronectin & lamina, sever mainly as a connective

tissue glue that allows connective tissue cells to attach themselves to

matrix elements. The proteoglycans consists of a protein core to which

glycosaminoglycans (GAGs) are attracted. The strand-like GAGs which are

large, negatively charged polysaccharides, stick out from the core protein

like the fibers of a bottle brush. Important examples of GAGs in

connective tissues are chondroitin sulfate, keratan sulfates, & hyaluronic

acid. The GAGs intertwine & trap water, forming a substance that varies

from a fluid to a semi-stiff hydrated gel. The relative amounts & kinds of

GAGs help determine the properties of the matrix. Example – The higher

the GAG content, the stiffer the ground substance is.

The ground substance holds fluids & functions as a molecular sieve, or

medium, through which nutrients & other dissolved substances can diffuse

between the blood capillaries & the cells. The fibers embedded in the

ground substance makes it less pliable & impede diffusion somewhat.

Fibers

The fibers of the connective tissue provide support. Three types of fibers

are found in connective tissue matrix:

Collagen Fibers – (white fibers), are constructed primarily of the

fibrous protein collagen. Collagen molecules are secreted into the

extracellular space, where the are assembled spontaneously into

cross-linked fibers. Collagen fibers are extremely tough & provide high

tensile strength to the matrix. Stress test show that collagen fibers are

stronger than steel fibers of the same size. Collagen fibers are the

most abundant.

Elastic Fibers – (yellow fibers), are formed largely from another fibrous

protein, elastin. Elastin has a randomly coiled structure that allows it

to stretch & recoil like a rubber band. The presence of elastin in the

matrix gives it a rubbery, or resilient, quality. Connective tissue can

stretch only so much before its thick, rope-like collagen fibers become

taut. Then, when the tension lets up, elastic fibers snap the connective

tissue back to its normal length & shape. Elastic fibers are found where

greater elasticity is needed (ex. skin, lungs, & blood vessel walls).

Reticular Fiber – are fine callagenous fibers & are continuous with

collagen fibers. They branch extensively, forming delicate networks

that surround small blood vessels & support the soft tissue of organs.

They are particularly abundant where connective tissue abuts other

tissue types, for example, in the basement membranes of epithelial

tissues, & around capillaries, where they form fuzzy ?nets.?

Cells

Each major class of connective tissue has a fundamental cell type that

exists in immature & mature forms. The undifferentiated cells, indicated

by the suffix blast, are actively mitotic cells that secrete the ground

substance & the fibers characteristics of their particular matrix. The

primary blast cell types by connective tissue class are:

Connective tissue proper: fibroblast.

Cartilage: chondroblast.

Bone: osteoblast.

Blood: hemocytoblast or hematopoietic stem cell.

Once they synthesize the matrix, the blast cells assume their less active,

mature mode, indicated by the suffix cyte. The mature cells maintain the

health of the matrix. However, if the matrix is injured, they can easily

revert to their more active state to repair & regenerate the matrix. (The

hemocytoblast, the blood-forming stem cell found in bone marrow, always

remains actively mitotic.)

Additionally, connective tissue is home to an assortment of other cell

types, such as nutrient-storing fat cells & mobile cells that migrate into the

connective tissue matrix from the bloodstream. The latter include white

blood cells (neutrophils, eosinophils, lymphocytes) & other cell types

concerned with tissue response to injury, such as mast cells,

macrophages, & antibody-producing plasma cells. This wide variety of

cells is particularly obvious in our prototype, areolar connective tissue.

The oval mast cells are typically found clustered in tissue spaces deep to

an epithelium or along blood vessels. These cells act as sensitive sentinels

to detect foreign substances (ex, bacteria, fungi) & initiate local

inflammatory responses against them. In the mast cell cytoplasm are

conspicuous secretory granules containing:

Heparin – an anticoagulant (a chemical that prevents the blood clotting)

when free in the bloodstream, but its significance in human mast cells

is uncertain

Histamine – is released during inflammatory reactions, makes the

capillaries leaky.

Macrophages are large, irregularly shaped cells that avidly phagocytize a

broad variety of foreign materials, ranging from foreign molecules to

entire bacteria to dust particles. Macrophages also engulf & dispose of

dead tissue cells, & they are central actors in the immune system. In

connective tissues, they may be attached to connective tissue fibers or

they may migrate freely through the matrix. Macrophages are peppered

throughout loose connective tissue, bone marrow, & lymphatic tissue.

Those in certain sites are given specific names. They are called histiocytes

in loose connective tissue, Kupffer cells in the liver, & microglial cells in the

brain. Although all these cells are phagocytes, some have selective

appetites. For example, macrophages of the spleen primarily dispose of

aging red blood cells, but they will not turn down other ?delicacies? that

come their way.

Classwork (pgs. 128-134) February 18, 1999

?Bone, Blood, Membranes, Nervous, & Muscle Tissues?

Bone (osseous) – due to its rock hardness it has the ability to support

& to protect softer tissue.

Blood – the fluid within blood vessels; functions as the transport vehicle

in the cardiovascular system.

Membranes – a continuous multicellular sheet composed of at least

two primary tissue types: an epithelium bound to an underlying layer of

connective tissue proper.

Cutaneous Membranes – are your skin.

Mucous Membranes – lines cavities open to the exterior.

Serous Membranes – are moist membranes found in closed ventral

body cavities (ex. pericardium, pleura).

Nervous Tissue – Has two major cell types.

Neurons – specialized cells that generate & conduct nerve

impulses.

Neuralgia – are supporting cells.

Muscle Tissue – made up of muscle fibers. Muscle cells possess

mylofilaments.

Skeletal Muscle – attached to bone, voluntary or stratified (lines);

form the flesh of the body.

Cardiac Muscle – occurs in the heart, it is striated & contains

intercalated discs ( junctions of branching cells).

Smooth Muscle – visceral or involuntary; found in hallow internal

organs.

Homework (pgs. 136) February 18, 1999

?Steps of Tissue Repair?

Tissue repair requires that cells divide & crawl, activities that are initiated

by growth factors (wound hormones) released by injured cells. It occurs in

two major ways: by regeneration – the replacement of destroyed tissue

with the same kind of tissue- & by fibrosis – involves proliferation of

fibrous connective tissue called scar tissue. Each of these occurs depends

on:

The types of tissue damaged.

The severity of the injury.

In skin, the tissue we will use as our example, repair involves both

activities.

Inflammation sets the stage. The process begins while the

inflammatory reaction is still going on. Let us briefly examine what has

happened up to this point. Tissue injury sets the following

inflammatory events into motion. First, because of the release of

histamine & other inflammatory chemicals by injured tissue cells,

macrophages, mast cells, & others, the capillaries dilate & become very

permeable. This allows white blood cells & plasma fluid rich in clotting

proteins, antibodies, & other substances to seep into the injured area.

Then the leaked clotting proteins construct a clot, which stops the loss

of blood, holds the edges of the wound together, & effectively walls off,

or isolates, the injured area, preventing bacteria, toxins, or other

harmful substances from spreading to surrounding tissues. The

portion of the clot exposed to the air quickly dries & hardens, forming a

scab. The inflammatory events leave excess fluid, bits of destroyed

cells, & other debris in the area. Most of this material is essentially

removed from the area via lymphatic vessels or phagocytized by

macrophages. At this point, the first step of tissue repair,

organization, begins.

Organization restores the blood supply. During organization the

temporary blood clot is replaced by granulation tissue. Granulation

tissue is a delicate pink tissue composed of several elements. Thin,

extremely permeable capillaries bud from intact capillaries nearby &

enter the damaged area, laying down a new capillary bed; they

protrude nub-like from the surface of the granulation tissue, giving it a

granular appearance. These capillaries are fragile & breed freely, as

demonstrated when someone ?picks at? a scab. Also present in

granulation tissue are scattered macrophages & fibroblasts that

synthesize new collagen fibers to bridge the gap permanently. As

organization continues, macrophages digest & remove the original

blood clot. The granulation tissue, destined to become scar tissue (a

permanent fibrous tissue patch), is highly resistant to infection

because it produces bacteria-inhibiting substances.

Regeneration &/or fibrosis effects permanent repair. While

organization is going on, the surface epithelium begins to regenerate.

Epithelial cells migrate across the granulation tissue just beneath the

scab, which soon detaches. As the fibrous tissue beneath matures &

contracts, the regenerating epithelium thickens until it finally

resembles than of the adjacent skin. The end result is a fully

regenerated epithelium, & an underlying region of scar tissue. The scar

may be invisible, or visible as a white thin line, depending on the

severity of the wound.

Classwork (pgs. 189-203) February 24, 1999

?Skeletal System?

The adult Skeleton has 206 separate bones. There are two main divisions:

Axial Skeleton – has 80 bones; the upper axis has 74; the inner ear has

6. Contains the skull. There are two major divisions: