Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд, а второе — равный по модулю положительный заряд. При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицательно заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих оболочках.
Особый случай представляет встреча элементарных заряженных античастиц, например, электрона и позитрона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, аннигилируют, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма зарядов электрона и позитрона равна нулю.
2.5. Закон сохранения энергии в механических процессах
Механическая энергия подразделяется на два вида: потенциальную и кинетическую. Потенциальная энергия характеризует взаимодействующие тела, а кинетическая — движущиеся. И потенциальная и кинетическая энергии изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля.
Рассмотрим теперь вопрос об изменении энергии при взаимодействии тел, образующих замкнутую систему. Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы не действуют, то при любых взаимодействиях тел сумма кинетической и потенциальной энергий тел остается постоянной. Это утверждение называется законом сохранения энергии в механических процессах.
Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Поэтому закон сохранения энергии можно сформулировать так: полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и упругости, остается постоянной.
Основное содержание закона сохранения энергии заключается не только в установлении факта сохранения полной механической энергии, но и в установлении возможности взаимных превращений кинетической и потенциальной энергий в равной количественной мере при взаимодействии тел.
Геофизическая энергия высвобождается в виде природных стихийных явлений (вулканизм, землетрясения, грозы, цунами и т.д.), обмена веществ в живых организмах (составляющих основу жизни), полезной работы по перемещению тел, изменению их структуры, качества, передачи информации, запасения энергии в различного рода аккумуляторах, конденсаторах, в упругой деформации пружин, мембран.
Любые формы энергии, превращаясь друг в друга посредством механического движения, химических реакций и электромагнитных излучений, в конце концов переходят в тепло и рассеиваются в окружающее пространство. Это явление проявляется в виде взрывных процессов, горения, гниения, плавления, испарения, деформации, радиоактивного распада. Происходит круговорот энергии в природе, характеризующийся тем, что в космическом пространстве реализуется не только хаотизация, но и обратный ей процесс — упорядочивание структуры, которые наглядно прослеживаются прежде всего в звездообразовании, трансформации и возникновении новых электромагнитных и гравитационных полей, и они снова несут свою энергию новым «солнечным системам». И все возвращается на круги своя.
Таким образом, к середине XIX в. оформились законы сохранения массы и энергии, которые трактовались как законы сохранения материи и движения. В начале XX в. оба эти закона сохранения подверглись коренному пересмотру в связи с появлением специальной теории относительности: при описании движений со скоростями, близкими к скорости света, классическая ньютоновская механика была заменена релятивистской механикой. Оказалось, что масса, определяемая по инерциальным свойствам тела, зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Понятие энергии тоже подверглось изменению: полная энергия оказалась пропорциональна массе (Е = mс2). Таким образом, закон сохранения энергии в специальной теории относительности естественным образом объединил законы сохранения массы и энергии, существовавшие в классической механике. По отдельности эти законы не выполняются, т.е. невозможно охарактеризовать количество материи, не принимая во внимание ее движение и взаимодействие.
Эволюция закона сохранения энергии показывает, что законы сохранения, будучи почерпнутыми из опыта, нуждаются время от времени в экспериментальной проверке и уточнении. Нельзя быть уверенным, что с расширением пределов человеческого познания данный закон или его конкретная формулировка останутся справедливыми. Закон сохранения энергии, все более уточняясь, постепенно превращается из неопределенного и абстрактного высказывания в точную количественную форму.
Глава 3. Динамические и статистические законы
Все физические законы делятся на две большие группы: динамические и статистические.
Динамическими называют законы, отражающие объективную закономерность в форме однозначной связи физических величин. Динамическая теория — это теория, представляющая совокупность физических законов.
Статистические законы — это такие законы, когда любое состояние представляет собой вероятностную характеристику системы. Здесь действуют статистические распределения величин. Это означает, что в статистических теориях состояние определяется не значениями физических величин, а их распределениями. Нахождение средних значений физических величин — главная задача статистических теорий. Вероятностные характеристики состояния совершенно отличны от характеристик состояния в динамических теориях. Статистические законы и теории являются более совершенной формой описания физических закономерностей, так как любой известный сегодня процесс в природе более точно описывается статистическими законами, чем динамическими. Различие между ними в одном — в способе описания состояния системы.
Смена динамических теорий статистическими не означает, что старые теории отменены и сданы в архив. Практическая их ценность в определенных границах нисколько не умаляется. При разговоре о смене теорий имеется в виду, в первую очередь, смена глубоких физических представлений более глубокими представлениями о сущности явлений, описание которых дается соответствующими теориями. Одновременно со сменой физических представлений расширяется область применения теории. Статистические теории расширяются на больший круг явлений, недоступных динамическим теориям.
3.1. Особенности описания состояний в статистических теориях
Согласно общепринятой терминологии под динамическими закономерностями (или теориями) понимаются закономерности, в которых связи всех физических величин однозначны. В статистических закономерностях (или теориях) однозначно связаны только вероятности определенных значений тех или иных физических величин, а связи между самими величинами неоднозначны. Общность этих теорий проявляется, прежде всего, в том, что все они вводят в качестве основного понятия состояние физической системы. Различие же между ними - в определении этого состояния. Например, в классической механике, являющейся динамической теорией, состояние задается координатами и импульсами материальных точек. В другой динамической теории - классической (феноменологической, эмпирической) термодинамике - состояние системы определяется давлением, объемом и температурой некоторой массы вещества. Эволюция этих состояний описывается соответствующими уравнениями - уравнением движения (в форме второго закона Ньютона) в механике и уравнениями переноса в термодинамике неравновесных процессов.
В статистической механике состояние системы определяется совершенно иначе: не положениями и импульсами частиц, а вероятностями того, что та или иная частица имеет координаты и импульсы в определенном диапазоне возможных значений. Чтобы лучше представить себе специфику такого подхода, рассмотрим конкретный пример. Пусть в результате многократного измерения координаты x некоторой частицы получено N значений, в общем случае отличающихся друг от друга,
x1, x2, ..., xN
Чтобы наглядно представить эти значения, строят ступенчатый график, который называется гистограммой (рис.1). Для этого интервал [xmin, x max] на оси абсцисс, в который попадают все значения серии , разбивают на k одинаковых по ширине интервалов x i, (i =1, 2 ..., k) и на каждом из них строят прямоугольник, высота которого равна относительному числу Ni/N, попавших в соответствующий интервал, деленному на ширину интервала x. Тогда при достаточно больших Ni и N площадь каждого прямоугольника будет равна вероятности Pi = Ni / N попадания результатов измерения в соответствующий интервал x i.
Если теперь устремить N к бесконечности и одновременно ширину интервалов x - к нулю, то ступенчатый график - гистограмма - перейдет в плавную кривую r (x) (рис.1), которая называется плотностью вероятности (или функцией распределения) случайной величины x. Смысл этой функции остается прежним: ее значение в той или иной точке x определяет вероятность dP того, что измеренное значение случайной величины x попадет в малый интервал [x, x + x]
dP = r(x) dx
Таким образом, если в классической механике состояние N материальных точек (являющихся, например, теоретической моделью идеального газа) задается значениями N радиус-векторов ri и N импульсов pi, то в статистической механике состояние тех же N материальных точек определяется функцией распределения r (r1, p1; r2, p2; ... rN, pN; t), с помощью которой можно вычислить вероятность того, что координаты и импульсы этих N точек находится между r1 и r1+dr1, p1 и p1+dp1, ..., rN и rN+drN, pN и pN +dpN.