Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.
Переработку информации в сенсорной системе осуществляют процессы возбудительного и тормозного межнейронного взаимодействия. Возбудительное взаимодействие заключается в том, что аксон каждого нейрона, приходя в вышележащий слой сенсорной системы, контактирует с несколькими нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя.
Совокупность рецепторов, сигналы которых поступают на данный нейрон, называют его рецептивным полем. Рецептивные поля соседних нейронов частично перекрываются. В результате такой организации связей в сенсорной системе образуется так называемая нервная сеть. Благодаря ей повышается чувствительность системы к слабым сигналам, а также обеспечивается высокая приспособляемость к меняющимся условиям среды.
Тормозная переработка сенсорной информации основана на том, что обычно каждый возбужденный сенсорный нейрон активирует тормозный интернейрон. Интернейрон в свою очередь подавляет импульсацию как самого возбудившего его элемента (последовательное, или возвратное, торможение), так и его соседей по слою (боковое, или латеральное, торможение). Сила этого торможения тем больше, чем сильнее возбужден первый элемент и чем ближе к нему соседняя клетка. Значительная часть операций по снижению избыточности и выделению наиболее существенных сведений о раздражителе производится латеральным торможением.
Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сенсорная адаптация - общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды).
Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.
В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т.е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.
Общее число эфферентных нервных волокон, приходящих к рецепторам или элементам какого-либо нейронного слоя сенсорной системы, как правило, во много раз меньше числа афферентных нейронов, приходящих к тому же слою. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части нижележащего нейронного слоя.
Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего порядка. В результате образования множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. Это особенно свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кроссмодальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.
Слуховая система - одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи как средства межличностного общения. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга через ряд последовательных отделов, которых особенно много в слуховой системе.
Периферический отдел слуховой сенсорной системы - ухо - состоит из трёх отделов: наружного, среднего и внутреннего уха.
Наружное ухо. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направленной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.
Среднее ухо. В заполненном воздухом среднем ухе находятся три косточки: молоточек, наковальня и стремечко, которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Молоточек вплетен рукояткой в барабанную перепонку, другая его сторона соединена с наковальней, передающей колебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке. Благоприятные условия для колебаний барабанной перепонки создает также слуховая (евстахиева) труба, соединяющая среднее ухо с носоглоткой, что служит выравниванию давления в нем с атмосферным. В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще круглое окно улитки, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у овального окна преддверия и прошедшие по ходам улитки, достигают, не затухая, круглого окна улитки. В его отсутствие из-за несжимаемости жидкости колебания ее были бы невозможны.
В среднем ухе расположены две мышцы: напрягающая барабанную перепонку (m. tensortympani) и стременная (m. stapedius). Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым ограничивает его движения. Рефлекторное сокращение этих мышц наступает через 10 мс после начала сильного звука и зависит от его амплитуды. Этим внутреннее ухо автоматически предохраняется от перегрузок. При мгновенных сильных раздражениях (удары, взрывы и т. д.) этот защитный механизм не успевает сработать, что может привести к нарушениям слуха (например, у взрывников и артиллеристов).
Строение улитки. Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, образующий 2,5 витка. Диаметр костного канала у основания улитки 0,04 мм, а на вершине ее - 0,5 мм. По всей длине, почти до самого конца улитки, костный канал разделен двумя перепонками: более тонкой - преддверной (вестибулярной) мембраной (мембрана Рейсснера) и более плотной и упругой - основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеется овальное отверстие улитки - helicotrema. Вестибулярная и основная мембрана разделяют костный канал улитки на три хода: верхний, средний и нижний
Верхний канал улитки, или лестница преддверия (scalavestibuli), у овального окна преддверия через овальное отверстие улитки (helicotrema) сообщается с нижним каналом улитки - барабанной лестницей (scalatympani). Верхний и нижний каналы улитки заполнены перилимфой, напоминающей по составу цереброспинальную жидкость.
Между верхним и нижним каналами проходит средний - перепончатый канал (scalamedia). Полость этого канала не сообщается с полостью других каналов и заполнена эндолимфой, в составе которой в 100 раз больше калия и в 10 раз меньше натрия, чем в перилимфе, поэтому эндолимфа заряжена положительно по отношению к перилимфе.
Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат - спиральный (кортиев) орган, содержащий рецепторные волосковые клетки (вторично-Чувствующие механорецепторы). Эти клетки трансформируют механические колебания в электрические потенциалы.