Смекни!
smekni.com

Термодинамика в существовании биологических систем (стр. 5 из 5)

Основное условие восприятия и запоминания информации - способность рецепторной системы переходить вследствие полученной информации в одно из устойчивых состояний, заранее заданных в силу ее организации. Поэтому информационные процессы в организованных системах связаны только с определенными степенями свободы. Сам процесс запоминания информации должен сопровождаться некоторой потерей энергии в рецепторной системе для того, чтобы она могла в ней сохраниться достаточное время и не теряться вследствие тепловых флуктуаций. Именно здесь и осуществляется превращение микроинформации, которую система не могла запомнить, в макроинформацию, которую система запоминает, хранит и затем может передать другим акцепторным системам. Как говорят, энтропия есть мера множества незапоминаемых системой микросостояний, а макроинформация - мера множества их состояний, о пребывании в которых система должна помнить.

Информационная емкость в ДНК, например, определяется не только количеством определенных нуклеотидов, а общим числом микросостояний, включающих колебания всех атомов цепочки ДНК. Процесс запоминания информации в ДНК - это фиксация определенного расположения нуклеотидов, которое устойчиво вследствие образующихся химических связей в цепочке. Дальнейшая передача генетической информации осуществляется в результате биохимических процессов, в которых диссипация энергии и образование соответствующих химических устойчивых структур обеспечивают эффективность биологической переработки информации. В целом информационные процессы широко распространены в биологии. На молекулярном уровне они протекают не только при запоминании и переработке генетической информации, но и при взаимном узнавании макромолекул, обеспечивают специфичность и направленный характер ферментативных реакций, имеют важное значение при взаимодействии клеточных мембран и поверхностей. Физиологические рецепторные процессы, играющие самостоятельную информационную роль в жизнедеятельности организма, также основаны на взаимодействиях макромолекул. Во всех случаях макроинформация возникает исходно в виде конформационных изменений при диссипации части энергии по определенным степеням свободы во взаимодействующих макромолекулах. В результате макроинформация оказывается записанной в виде набора достаточно энергетически глубоких конформационных подсостояний, которые позволяют сохранять эту информацию в течение времени, необходимого для ее дальнейшей переработки. Биологический смысл этой макроинформации реализуется уже в соответствии с особенностями организации биологической системы и конкретными клеточными структурами, на которых разыгрываются дальнейшие процессы, приводящие в итоге к соответствующим физиолого-биохимическим эффектам.

ЗАКЛЮЧЕНИЕ

Приведенные материалы показали, что примененный подход к решению ряда проблем теоретической биологии с позиций неравновесной термодинамики позволил в определенной степени объяснить сущность и закономерность функционирования живых организмов и их способностей к адаптации. Изложенные в работе новые законы и положения позволяют с достаточной уверенностью утверждать, что движущей силой в процессах жизнедеятельности живых организмов является максимальное обеспечение устойчивости неравновесного термодинамического состояния, осуществляемое путем непрерывного чередования циклов, содержащих фазы синтеза АТФ из питательных веществ и его последующего расщепления.

На эту основную цель направлена вся совокупность деятельности клеток, органов, систем и целостного организма.

Поэтому при исследованиях их функционирования необходимо исходить из того, что все реакции и процессы в живых организмах направлены именно на эту цель.

Тогда, возможно, станут более понятны те сложнейшие процессы, которые происходят в живом организме, а также определена их закономерность.

СПИСОК ЛИТЕРАТУРЫ

1. Рубин А.Б. Термодинамика биологических процессов. М., 1984.

2. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М., 1979.

3. Бауэр Э.С. Теоретическая биология. Росток. 2002.

4. Доброборский Б.С. Термодинамика биологических систем. Учебное пособие для студентов высших медицинских учебных заведений. Под редакцией профессора Е.С. Мандрыко. Санкт-Петербург 2006.