Общая теория относительности. В рамках общей теории относительности, которая создавалась в течение десяти лет, с 1906 по 1916 г., А. Эйнштейн обратился к проблеме тяготения, давно привлекавшей к себе внимание ученых. Поэтому общую теорию относительности часто называют теорией тяготения. В ней были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Общая теория относительности основывается уже не на двух, а на трех постулатах.
Первый постулат общей теории относительности — расширенный принцип относительности, который утверждает инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных, движущихся с ускорением или замедлением. Он говорит о том, что нельзя приписывать абсолютный характер не только скорости, но и ускорению, которое имеет конкретный смысл только по отношению к фактору, его определяющему.
Второй постулат — принцип постоянства скорости света — остается неизменным.
Третий постулат — принцип эквивалентности инертной и гравитационной масс. Этот факт был известен еще в классической механике. Теоретический анализ, который был сделан ученым, позволил сделать вывод, что физика не знает способа отличить эффект гравитации от эффекта ускорения. Иначе говоря, кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g, то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли.
Важнейшим выводом общей теории относительности стала идея, что изменение геометрических (пространственных) и временных характеристик тел происходит не только при движении с большими скоростями, как это было доказано специальной теорией относительности, но и в гравитационных полях.
Сделанный вывод неразрывно связывал общую теорию относительности с геометрией, но общепризнанная геометрия Евклида для этого не годилась. Эйнштейн использовал геометрию Б. Римана, которая верна для поверхности сферы, и сделал вывод о кривизне пространства-времени.
Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца, достаточно небольшой по космическим меркам звезды, влияет на темп протекания времени, замедляя его вблизи себя. Поэтому, если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала, отправленного на такое же расстояние, Солнца не будет. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с. Такие эксперименты проводились, начиная с 1966 г., в качестве отражателя использовались как поверхности планет (Меркурия, Венеры), так и оборудование межпланетных станций.
Одно из самых фантастических предсказаний общей теории относительности — полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее тяготение. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронных звезд, а у гравитационного радиуса черной дыры оно столь велико, что время там, с точки зрения внешнего наблюдателя, просто замирает.
Существование черных дыр было предсказано общей теорией относительности. Если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700 000 км), оно превратилось бы в черную дыру. Из-за такого сжатия сила тяготения на поверхности, откуда исходит свет, возрастет настолько, что гравитационное красное смещение окажется действительно бесконечным. Солнце просто станет невидимым, ни один фотон не вылетит за его пределы. С нашим Солнцем такого не случится, а вот звезды, превосходящие Солнце по массе в 3 раза, в конце своей эволюции превращаются в такие объекты.
В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственно – временных представлений классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.
Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно - временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня:
· уровень молекулярно - атомных явлений,
· уровень релятивистских квантовоэлектродинамических процессов,
· уровень элементарных частиц,
· уровень ультрамалых масштабов, где пространственно - временные отношения оказываются несколько иными, чем в физике макромира.
В этой области по-иному следует понимать природу пустоты - вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи - как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая "пустота" - это одно из состояний материи.
На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно - временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно - временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе - с гипотезой о возможной макроскопической природе пространства и времени.
Рассмотрим более подробно эти направления.
Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона - частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).
Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно - временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из неопределённости бесконечности, так как содержит фундаментальную длину - основу атомистического пространства.
В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства - времени, что приводит к теории квантового пространства - времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.