Таким образом, в солнечной фотоэнергетике наиболее вредным для человека и окружающей среды является технологический процесс получения солнечных элементов, их хранения и утилизации.
Среди других аспектов отрицательного влияния солнечной энергетики на социально-экологические условия в стране следует отметить следующие.
Солнечные энергетические станции достаточно землеёмки из-за весьма рассеянного характера поступления солнечного излучения на Землю. Для сравнения с другими типами энергетических установок в таблице приведены экспертные оценки их землеёмкость. Из таблицы следует, что для получения 1 МВт на БСЭС требуется 1,1 га земли, на СФЭУ – от 1,0 до 1,6 га, а на солнечных прудах – до 8 га, что весьма ощутимо для обжитых районов любой страны.
Таблица 1
Землеёмкость разных типов энергетических установок
Тип | Биоэнергетические | ГЭС | ВЭС | Солнечный пруд | Геотермаль-ные ЭС | АЭС | СФЭУ | ТЭС без топливной базы | БСЭС |
Землеём-кость,Га/МВт | 20 | 10 | 10 | 8 | 1,9 | 0,65 – 2,0 | 1 – 1,6 | 1,17 | 1,1 |
Эксплуатация солнечных прудов способствует загрязнению почвы и подземных вод химически активными растворами солей.
При эксплуатации БСЭС, а также СФЭС происходит заметное изменение климатических условий в данном месте, в том числе изменение почвенных условий, растительности, циркуляции воздуха вследствие затенения поверхности, с одной стороны, и нагрева воздуха – с другой. Из-за последнего меняется тепловой баланс влажности воздуха, направление и величина ветров. Для СЭС с концентраторами солнечного излучения велика опасность перегрева и возгорания самих систем получения энергии от солнечного излучения.
Применение низкокипящих жидкостей и их неизбежные утечки в СЭС могут привести к загрязнению почвы, подземной и даже питьевой воды в регионе. Особо опасны жидкости, содержащие нитриты и хроматы, которые являются весьма токсичными веществами.
Низкий коэффициент преобразования солнечного излучения в электроэнергию ведет к появлению проблем, связанных с охлаждением конденсата. При этом тепловые выбросы в атмосферу на СЭС более чем в два раза превышают аналогичный показатель у ТЭС.
Для учета отрицательного влияния различных типов энергоустановок на окружающую среду в настоящее время предложено несколько различных методик и подходов.
В качестве примера в таблице представлены значения так называемого штрафного экологического балла для различных видов используемого источника энергии, который дает возможность некоторого безразмерного количественного учета их отрицательного влияния на окружающую среду.
Эти баллы рассчитаны с учетом различных негативных факторов воздействия на окружающую среду.
Таблица 2
Штрафной экологический балл для различных видов используемого источника электроэнергии
Топливо/технология | Штрафной экологический балл |
Бурый уголь | 1735 |
Нефтяное топливо | 1398 |
Каменный уголь | 1356 |
Ядерное топливо | 672 |
Солнечные фотоэлектрические элементы | 461 |
Природный газ | 267 |
Ветер | 65 |
Малые ГЭС | 5 |
Однако и перемещение СЭС в космос не избавляет солнечную энергетику от решения связанных с ней социально-экологических проблем, определяемых сложностью технологического процесса передачи энергии с космических СЭС на Землю. Экспертные оценки показывают, что для передачи 5000 МВт на Землю с космической СЭС с помощью СВЧ-излучения потребуется антенна-излучатель с диаметром до 1 км; ректенна на Земле диаметром до 12 км (на экваторе). В целом же с учетом всего технологического цикла преобразования постоянного тока в переменный на Земле потребуется занять площадь до 250-270
Передача по СВЧ-лучу больших мощностей может привести к изменению распределения заряженных частиц ионосферы и, как следствие, к изменению условия распространения радиоволн и помех в радиосвязи и телесвязи.
СВЧ-пучок и особенно его высокочастотная составляющая сильно поглощаются молекулами воды и кислорода, что ведет к локальному нагреву атмосферы в месте прохождения СВЧ-пучка.
Однако, несмотря на вышеперечисленные проблемы, в целом отрицательное влияние технических устройств солнечной энергетики на человека и окружающую среду намного меньше, чем у других видов энергетики и особенно традиционных АЭС, ТЭС и ГЭС.
Заключение
"Солнце разлито поровну. Вернее, по справедливости. Вернее, по стольку разлито, кто сколько способен взять", - писал поэт Владимир Солоухин. На самом деле даровой и нескончаемой солнечной энергии "разлито" по Земле столько, что, если "взять" от нее всего-навсего 2%, этого хватит, чтобы обеспечить человечество светом и теплом на многие тысячелетия. Но люди еще не научились в полной мере использовать столь щедрый дар природы, они делают лишь первые шаги в создании солнечной энергетики.
Из возможных "преемников", которые могут подхватить эстафету у традиционной энергетики, наиболее привлекательно среди альтернативных источников выглядит энергия Солнца, экологически чистая уже потому, что миллиарды лет поступает на Землю и все земные процессы с ней свыклись. Поток солнечной энергии люди просто обязаны взять под свой контроль и максимально использовать, сохраняя тем самым неизмененным уникальный земной климат.
Причина медленного развития солнечной энергетики проста: средний поток радиации, поступающий на поверхность Земли от нашего светила, очень слаб, например, на широте 40х он составляет всего 0,3 кВт/ - почти в пять раз меньше того потока, который приходит на границу атмосферы (1,4 кВт/
). К тому же он зависит от времени суток, сезона года и погоды. Чтобы усилить поток солнечной энергии, надо собирать ее с большой площади с помощью концентраторов и запасать впрок в аккумуляторах. Пока это удается сделать в так называемой малой энергетике, предназначенной для снабжения светом и теплом жилых домов и небольших предприятий.СЭС мощностью 0,1-10 МВт построены во многих странах с "хорошим" солнцем (США, Франция, Япония). Не так давно появились проекты более мощных СЭС (до 100 МВт). Главное препятствие на пути их широкого распространения - высокая себестоимость электроэнергии: она в 6-8 раз выше, чем на ТЭС. Но с применением более простых по конструкции, а значит, и более дешевых гелиостатов себестоимость электроэнергии, вырабатываемой СЭС, должна существенно снизиться.
Понимая это, многие государства сегодня стараются инвестировать в солнечную энергетику огромные средства.
Солнечная энергетика еще в самом начале пути. Ее вклад в общее мировое энергопотребление не превышает 0,1%, а среди возобновляемых источников ей принадлежит около 1%. Но технический прогресс, достигнутый в этой области за последнее десятилетие, так велик, что специалисты дают весьма оптимистические прогнозы: уже к середине XXI века солнечная энергетика наряду с другими возобновляемыми источниками (геотермальные и приливные станции, ветровые турбины и др.) может занять ведущее положение в мире.
Список литературы:
1. Солнечная энергетика: учебное пособие для вузов /под ред. Виссарионова В. И., М.: изд. дом МЭИ, 2008
2. Дьяков А. Ф. Малая энергетика России: проблемы и перспективы. М.: «Энергопрогресс: энергетика», 2003
3. Умаров Г. Я., Ершов А. А. Солнечная энергетика. М.: «Знание», 1974
4. Челяев В. Ф. Солнечная энергетика – энергетика будущего. «Энергия: экономика, техника, экология», № 10, 2008
5. Андреев С.В. Солнечные электростанции. М.: «Наука», 2002
6. Харченко Н.В. Индивидуальные солнечные установки М.: «Энергоатомиздат», 1991
7. О чем пишут научно-популярные журналы мира. "Наука и жизнь" № 6, 2008, с. 111 - 112
8. Сворень Р. Преодолевая немалые трудности, человечество все же продвигается к самым экологически чистым и безопасным энергетическим установкам, для которых к тому же земные запасы топлива безграничны. "Наука и жизнь"№ 8, 2001, с 19 – 23
9. Руденко Б. Солнце и ветер, лед и вода. «Наука и жизнь», № 8, 2008, с 58 - 61
10. http://www.energyland.info.ru
11. http://www.sci-lib.com
12. http://www.greenenergy.com
13. http://www.nitolsolar.com
14. http://www.cleandex.ru
15. http://www.nanonewsnet.ru
16. http://www.ecogeek.ru