Професор Джон А. Уиллер помітив: «Одну справу вивчати майже стаціонарну зірку, як, наприклад, Сонце, інша справа - коли ми беремося пророкувати вигадливу динаміку наднової. Ми вміємо в подробицях пророкувати і хід ядерних реакцій, що йдуть у надрах Сонця й інших зірок, і вихід енергії випромінювання з поверхні зірки. Однак чи можемо ми з такою же впевненістю говорити про зірки, що випробують могутні внутрішні рухи?»
Недавно вчені почали спробу застосувати математичну теорію атомного вибуху для опису гідродинаміки наднових. Це дозволило ретельно досліджувати гідродинаміку наднових за допомогою теорії, що свідомо не занадто далека від істини. Деякі астрономи розрізняють п'ять типів наднові; два з них головні - це наднові типу 1 і наднові типу 2.
НЕЙТРОННІ
Зірки, у яких маса в 1,5-3 рази більше, ніж у Сонця не зможуть наприкінці життя зупинити свій стиск на стадії білого карлика. Могутні сили гравітації стиснуть них до такої щільності, при якій відбудеться «нейтралізація» речовини: взаємодія електронів із протонами приведе до того, що майже вся маса зірки буде укладена в нейтронах. Утвориться нейтронна зірка. Найбільш масивні зірки можуть обраться в нейтронні, після того як вони вибухнуть як наднові.
Концепція нейтронних зірок не нове: перше припущення про можливість їхнього існування було зроблено талановитими астрономами Фрицем Цвикки і Вальтером Баарде з Каліфорнії в 1934р. (трохи раніш у 1932р. можливість існування нейтронних зірок була передвіщена відомим радянським ученим Л. Д. Ландау.) Наприкінці 30-х років вона стала предметом досліджень інших американських вчених Оппенгеймера і Волкова. Інтерес цих фізиків до даної проблеми був викликаний прагненням, визначити кінцеву стадію еволюції масивної стискальної зірки. Тому що роль і значення наднові розкрилися приблизно в той же час, було висловлене припущення, що, нейтронна зірка може виявитися залишком вибуху наднової. До нещастя, з початком другої світової війни увага вчених переключилося на військові потреби і детальне вивчення цих нових і найвищою мірою загадкових об'єктів було припинено. Потім, у 50-х роках, вивчення нейтронних зірок відновили чисто теоретично з метою установити, чи мають вони відношення до проблеми народження хімічних елементів у центральних областях зірок. Нейтронні зірки залишаються єдиним астрофізичним об'єктом, існування і властивості яких були передвіщені задовго до їхнього відкриття.
На початку 60-х років відкриття космічних джерел рентгенівського випромінювання досить обнадіяло тих, хто розглядав нейтронні зірки як можливі джерела небесного рентгенівського випромінювання. До кінця 1967р. був виявлений новий клас небесних об'єктів - пульсари, що привело вчених у замішання. Це відкриття з'явилося найбільше важливою подією у вивченні нейтронних зірок, тому що воно знову підняло питання про походження космічного рентгенівського випромінювання.
Говорячи про нейтронні зірки, варто враховувати, що їхні фізичні характеристики встановлені теоретично і досить гипотетичні, тому що фізичні умови, що існують у цих тілах, не можуть бути відтворені в лабораторних експериментах.
Вирішальне значення на властивості нейтронних зірок роблять гравітаційні сили. За різними оцінками, діаметри нейтронних зірок складають 10-200 км. І цьому незначний по космічному поняттях обсяг «набитий» такою кількістю речовини, що може скласти небесне тіло, подібне до Сонця, діаметром близько 1,5 млн. км, а по масі майже в третину мільйона разів важче Землі! Природний наслідок такої концентрації речовини - неймовірно висока щільність нейтронної зірки. Фактично вона виявляється настільки щільної, що може бути навіть твердої. Сила ваги нейтронної зірки настільки велика, що людина важила б там, біля мільйона тонн. Розрахунки показують, що нейтронні зірки сильно намагнічені. Відповідно до оцінок, магнітне поле нейтронної зірки може досягати 1млн. млн. гаусс, тоді як на Землі воно складає 1 гаусс. Радіус нейтронної зірки приймається порядку 15 км, а маса - близько 0,6 - 0,7 маси Сонця. Зовнішній шар являє собою магнітосферу, що складається з розрідженої електронної і ядерної плазми, що пронизана могутнім магнітним полем зірки. Саме тут зароджуються радіосигнали, що є відмітною ознакою пульсарів. Сверхшвидкі заряджені частки, рухаючи по спіралях уздовж магнітних силових ліній, дають початок різного роду випромінюванням. В одних випадках виникає випромінювання в радіодіапазоні електромагнітного спектра, в інших - випромінювання на високих частотах. Майже відразу ж під магнітосферою густина речовини досягає 1 т/см3, що в 100 000 разів більше щільності заліза.
Наступний за зовнішнім шар має характеристики металу. Цей шар «надтвердого» речовини, що знаходиться в кристалічній формі. Кристали складаються з ядер атомів з атомною масою 26 - 39 і 58 - 133. Ці кристали надзвичайно малі: щоб покрити відстань у 1 див, потрібно вибудувати в одну лінію близько 10 млрд. кристаликів. Щільність у цьому шарі більш ніж у 1 млн. раз вище, ніж у зовнішньому, або інакше, у 400 млрд. раз перевищує щільність заліза. Рухаючи далі до центра зірки, ми перетинаємо третій шар. Він містить у собі область важких ядер типу кадмію, але також багатий нейтронами й електронами. Щільність третього шару в 1 000 разів більше, ніж попереднього.
Глибше проникаючи в нейтронну зірку, ми досягаємо четвертого шару, щільність при цьому зростає незначно - приблизно в п'ять разів. Проте, при такій щільності ядра вже не можуть підтримувати свою фізичну цілісність: вони розпадаються на нейтрони, протони й електрони. Велика частина речовини перебуває у виді нейтронів. На кожен електрон і протон приходиться по 8 нейтронів. Цей шар, власне кажучи, можна розглядати як нейтронну рідину, «забруднену» електронами і протонами.
Нижче цього шару знаходиться ядро нейтронної зірки. Тут щільність приблизно в 1,5 рази більше, ніж у шарі. І, проте, навіть таке невелике збільшення щільності приводить до того, що частки в ядрі рухаються багато швидше, ніж у будь-якому іншому шарі. Кінетична енергія руху нейтронів, змішаних з невеликою кількістю протонів і електронів, настільки велика, що постійно відбуваються непружні зіткнення часток. У процесах зіткнення народжуються усі відомі в ядерній фізиці частки і резонанси, яких нараховується більш тисячі. Цілком ймовірно, є присутнім велике число ще не відомих нам часток.
Температури нейтронних зірок порівняно високі. Цього і варто очікувати, якщо врахувати, як вони виникають. За перші 10 - 100 тис. років існування зірки температура ядра зменшується до декількох сотень мільйонів градусів. Потім настає нова фаза, коли температура ядра зірки повільно зменшується унаслідок випущення електромагнітного випромінювання.
Якщо маса зірки в два рази перевищує сонячну, то до кінця свого життя зірка може вибухнути як наднова, але якщо маса речовини після вибуху, усе ще перевершує дві сонячні, то зірка повинна в щільне малюсіньке тіло, тому що гравітаційні сили цілком придушують усякий внутрішній опір стискові. Учені думають, що саме в цей момент катастрофічний гравітаційний колапс приводить до виникнення чорної діри. Вони вважають, що з закінченням термоядерних реакцій зірка вже не може знаходитися в стійкому стані. Тоді для масивної зірки залишається один неминучий шлях - шлях загального і повного стиску (колапсу), що перетворює її в невидиму чорну діру.
У 1939р. Р. Оппенгеймер і його аспірант Снайдер у Каліфорнійському університеті (Беркли) займалися з'ясуванням остаточної долі великої маси холодної речовини. Одним з найбільш вражаючих наслідків загальної теорії відносності Эйнштейна виявилася наступне: коли велика маса починає колапсувати, цей процес не може бути зупинена і маса стискується в чорну діру. Якщо, наприклад, не обертова симетрична зірка починає стискуватися до критичного розміру, відомого як гравітаційний радіус, або радіус Шварцшильда (названий так на честь Карла Шварцшильда, що першим указав на його існування). Якщо зірка досягає цього радіуса, то вже не що не може перешкодити їй завершити колапс, тобто буквально замкнутися в собі. Чому ж дорівнює гравітаційний радіус? Строге математичне рівняння показує, що для тіла з масою Сонця гравітаційний радіус дорівнює майже 3 км, тоді як для системи, що включає мільярд зірок, - галактики - цей радіус виявляється рівним відстані від Сонця до орбіти планети Уран, тобто складає близько 3 млрд. км.
Які ж фізичні властивості «чорних дір» і як учені припускають знайти ці об'єкти? Багато вчених роздумували над цими питаннями; отримані деякі відповіді, що здатні допомогти в пошуках таких об'єктів.
Сама назва - чорні діри - говорить про те, що це клас об'єктів, які не можна побачити. Їхнє гравітаційне поле настільки сильне, що якби якимсь шляхом удалося виявитися поблизу чорної діри і направити убік від її поверхні промінь самого могутнього прожектора, то побачити цей прожектор було б не можна навіть з відстані, що не перевищує відстань від Землі до Сонця. Дійсно, навіть якби ми змогли сконцентрувати усе світло Сонця в цьому могутньому прожекторі, ми не побачили б його, тому що світло не змогло б перебороти вплив на нього гравітаційного поля чорної діри і залишити її поверхня. Саме тому така поверхня називається абсолютним обрієм подій. Вона являє собою границю чорної діри.
Учені відзначають, що ці незвичайні об'єкти нелегко зрозуміти, залишаючись у рамках законів тяжіння Ньютона. Поблизу поверхні чорної діри гравітація настільки сильна, що звичні ньютоновскі закони перестають тут діяти. Їх варто замінити законами загальної теорії відносності Ейнштейна. Відповідно до одному з трьох наслідків теорії Ейнштейна, залишаючи масивне тіло, світло повинний випробувати червоний зсув, тому що він повинний випробувати червоний зсув, тому що він втрачає енергію на подолання гравітаційного поля зірки. Випромінювання, що приходить від щільної зірки, подібної до білого карлика - супутникові Сиріуса А, - лише злегка зміщається в червону область спектра. Ніж щільніше зірка, тим більше цей зсув, так що від надміцною зірки зовсім не буде приходити випромінювання у видимій області спектра. Але якщо гравітаційна дія зірки збільшується в результаті її стиску, то сили тяжіння виявляються настільки великі, що світло взагалі не може залишити зірку. Таким чином, для будь-якого спостерігача можливість побачити чорну діру цілком виключена! Але тоді природно виникає питання: якщо вона невидима, то, як же ми можемо неї знайти? Щоб відповісти на це питання, учені прибігають до митецьких вивертів. Руффіні й Уілер досконально вивчили цю проблему і запропонували кілька способів нехай не побачити, але хоча б знайти чорну діру. Почнемо з того, що, коли чорна діра народжується в процесі гравітаційного колапсу, вона повинна випромінювати гравітаційні хвилі, що могли б перетинати простір зі швидкістю світла і на короткий час спотворювати геометрію простору поблизу Землі. Це перекручування проявилося б у виді гравітаційних хвиль, що діють одночасно на однакові інструменти, установлені на земній поверхні на значних відстанях друг від друга. Гравітаційне випромінювання могло б приходити від зірок, що випробують гравітаційний колапс. Якщо протягом звичайного життя зірка оберталася, то, стискуючись і стаючи, усе менше і менше, вона буде обертатися усе швидше, зберігаючи свій момент кількості руху. Нарешті вона може досягти такої стадії, коли швидкість руху на її екваторі наблизиться до швидкості світла, тобто до гранично можливої швидкості. У цьому випадку зірка виявилася б сильно деформованої і могла б викинути частина речовини. При такій деформації енергія могла б іти від зірки у виді гравітаційних хвиль з частотою порядку тисячі коливань у секунду (1000 Гц).