Смекни!
smekni.com

Концепции современного естествознания 2 3 (стр. 22 из 111)

Таким образом, материя двулика: она обладает и корпускулярными, и волновыми свойствами, которые проявляются в зависимости от условий. Отсюда общая картина реальности в квантово-полевой картине мира становится как бы двуплановой: с одной стороны, в нее входят характеристики исследуемого объекта, а с другой — условия наблюдения, от которых зависит определенность этих характеристик. Это означает, что картина реальности в современной физике является не только картиной объекта, но и картиной процесса его познания.

Итак, ушли в прошлое представления о неизменности материи и возможности достичь конечного предела ее делимости. Сегодня мы рассматриваем материю с точки зрения корпускулярноволнового дуализма. Одной из основных особенностей элементарных частиц является их универсальная взаимопревращаемость и взаимозависимость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.

Кардинально меняется представление о движении, которое становится лишь частным случаем фундаментальных физических взаимодействий. Известно четыре вида фундаментальных физических взаимодействий: гравитационное, электромагнитное, сильное и слабое. Все они описываются на основе современного принципа близкодействия. В соответствии с ним взаимодействие каждого типа передается соответствующим полем от точки к точке. При этом скорость передачи взаимодействия всегда конечна и не может превышать скорости света в вакууме (300 000 км/с).

Окончательно утверждаются представления об относительности пространства и времени, их зависимости от материи. Пространство

87

и время перестают быть независимыми друг от друга и согласно теории относительности сливаются в едином четырехмерном пространстве-времени, которое не существует вне материальных тел.

Спецификой квантово-полевых представлений о закономерности и причинности является то, что они всегда выступают в вероятностной форме, в виде так называемых статистических законов. Они соответствуют более глубокому уровню познания природных закономерностей. Таким образом, оказалось, что в основе нашего мира лежит случайность, вероятность.

Также новая картина мира впервые включила в себя наблюдателя, от присутствия которого зависели получаемые результаты исследований. Более того, был сформулирован так называемый антропныи принцип, который утверждает, что наш мир таков, каков он есть, только благодаря существованию человека. Отныне появление человека считается закономерным результатом эволюции Вселенной.

4.5. Соотношение динамических и статистических законов

Все положения физической картины мира тесно связывают физику с философией. Но одно из них прямо входит в философские основания науки — это положение о форме физических законов, отражающих причинно-следственные связи, существующие в природе.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления связаны между собой причинноследственными связями, а беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей — существенных, повторяющихся связей между предметами и явлениями — задача науки, так же как и формулирование их в виде законов науки, которые являются нашим знанием о природных закономерностях.

Никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же самое касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны.

Поэто-

88

му для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

Физика знает два типа физических законов (теорий) — динамические и статистические.

Динамический закон — это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно.

Динамической теорией является физическая теория, представляющая совокупность динамических законов. Исторически первой и наиболее простой теорией такого рода явилась классическая механика Ньютона.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики Ньютона. Если какие-либо объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, однако с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Формулирование этого требования в жесткой форме обычно связывают с именем П. Лапласа, который заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны для любого данного момента все силы, действующие на все тела Вселенной (от самых больших ее тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным, и ему было бы открыто как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых не являются определенными, а только вероятными. Они получили название статистических законов.

Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При бросании игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпа-

89

дет при данном броске кости, нельзя. Мы можем подсчитать лишь вероятность выпадения любого числа очков. В данном случае она будет равна 1/6. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, то какая-то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинноследственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, так как показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл событий, в результате чего мы можем получить статистические средние значения. Так, если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 • 1/6 = 50 раз. При этом совершенно безразлично, бросать одну и ту же кость или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде — гораздо более сложный процесс. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому

(вероятностному) закону.

Статистические законы, в отличие от динамических, отражают однозначную связь не физических величин, а их статистических распределений. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма. В отличие от жесткого классического детерминизма, он может быть назван вероятностным (современным) детерминизмом. Эти законы меньше огрубляют действительность. Поэтому они способны учитывать и отражать те случайности, которые происходят в мире.

Сразу же после появления в физике понятия статистического закона возникла проблема существования статистических закономерностей и их соотношения с динамическими законами и закономерностями.

С развитием науки подход к этой проблеме и даже ее постановка менялись. Первоначально никаких сомнений в преимуществе динамических законов перед статистическими не было. Они считались временной мерой, которой можно пользоваться до открытия соответствующих динамических законов.

90

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Дело в том, что появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения, что они не сводятся друг к другу, а взаимно дополняют друг друга. Обычно говорили, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения — с помощью статистических законов. Соотношение таких теорий, как термодинамика и статистическая механика, электродинамика Максвелла и электронная теория Лоренца, казалось, подтверждало это.