Смекни!
smekni.com

Онтология, эпистемология и философия языка Рассела (стр. 3 из 7)

Противоречие демонстрирует неприемлемость такого понимания функции и аргумента, которое имеет место у Фреге, но это еще не означает, что неверна функциональная трактовка логической структуры высказывания. Для решения парадокса Рассел разрабатывает так называемую теорию типов, которая по существу сводится к ограничениям, накладываемым на образование классов, а стало быть, и соответствующих высказывательных (пропозициональных) функций. Так, например, он пишет: «Общность классов в мире не может быть классом в том же самом смысле, в котором последние являются классами. Так мы должны различать иерархию классов. Мы будем начинать с классов, которые всецело составлены из индивидов, это будет первым типом классов. Затем мы перейдем к классам, членами которых являются классы первого типа: это будет второй тип. Затем мы перейдем к классам, членами которых являются классы второго типа; это будет третий тип и т.д. Для класса одного типа никогда невозможно быть или не быть идентичным с классом другого типа»[5] . На образование классов необходимо накладывать ограничения, запретив образовывать классы, которые могли бы выступать в качестве своих собственных элементов. Классы должны образовывать строгую иерархию, где первый уровень представляли бы собой классы, содержащие только индивиды, второй уровень – классы, содержащие классы индивидов, третий уровень – классы, содержащие классы классов индивидов, и т.д. Разные уровни требуют различных средств выражения; то, что можно сказать об индивидах, нельзя сказать об их классах, а то, что можно сказать о классах индивидов, нельзя сказать о классах классов индивидов и т.д. В общем, это и составляет сущность теории типов.

В применении к высказывательным функциям это означает, что ни одна функция не может быть применена к самой себе; то, что рассматривается в качестве аргумента, никогда не должно становиться функцией, и наоборот, на одном и том же уровне. Последнее требование закрепляется Расселом в теории удовлетворительного символизма. Зафиксировать тип – значит зафиксировать соответствующий тип символа, указывающий на соответствующее значение. С точки зрения Рассела, к парадоксам приводит смешение различных типов, которого необходимо избегать. При таком подходе, очевидно, отпадает надобность в оценке контекста целостного высказывания. Значение символа должно заранее определяться словарем, который сконструирован иерархическим образом согласно типам, а правила образования выражений накладывают ограничения на использование словаря.

Теория типов становится для Рассела универсальным методом решения парадоксов, не только обнаруженных им самим, но и известных с давних времен. Возьмем, например, парадокс лжеца. Если некто высказывает утверждение “Я сейчас лгу”, то с традиционной точки зрения, при попытке определить истинностное значение этого утверждения мы всегда придем к противоречию. Действительно, поскольку он лжет, то ложным должно быть и высказанное им утверждение; но, учитывая его содержание, мы тогда должны сказать, что оно истинно. Если же его утверждение истинно, то, согласно утверждаемому содержанию, оно говорит о своей собственной ложности и, стало быть, является ложным. В любом случае возникает противоречие. Но, используя теорию типов, Рассел решает этот парадокс, разводя по разным уровням высказывания, о которых говорит это утверждение, и само это утверждение[6] . С точки зрения теории типов, человек, утверждающий, что он лжет, имеет в виду ложность по крайней мере одного высказывания из класса высказываний, охватываемых его утверждением. Но само его утверждение не должно включаться в этот класс, поскольку оно относится к более высокому типу. Поэтому истинностная оценка должна релятивизироваться относительно типа высказанных утверждений. Любое утверждение о высказываниях n -го типа само будет относиться к n +1 типу и не должно включаться в класс оцениваемых высказываний.

Символическая система Фреге не удовлетворяет требованиям теории типов, поэтому в ней и можно сформулировать парадоксальные утверждения.

4. Коррекция определения числа и аксиома бесконечности

Формулировка парадокса затрагивает не только противоречивость рассуждения, но и другой важный аспект логицистской программы Г.Фреге, который связан с определением арифметических понятий в логических терминах. Определение числа по Фреге, как оно было сформулировано выше, требует рассматривать классы, состоящие из элементов, принадлежащих к различным типам. Например, уже определение числа два предполагает класс, образованный из нуль-класса и класса, элементом которого является сам нуль-класс. Однако именно это и содержит парадокс, который обнаружил Рассел. Рассел сохраняет логицистскую установку на то, что арифметика сводима к логике, но в свете установленного противоречия определение числа должно быть модифицировано таким образом, чтобы исключить смешение типов.

Рассел выходит из затруднения следующим образом[7] . Он сохраняет общий фрегеанский подход к числу с точки зрения классов, находящихся во взаимно-однозначном соответствии. Сохраняет он и определение нуля как класса неравных самим себе объектов. Модификация определения начинается с числа один. Число один соответствует классу всех классов, находящихся во взаимно-однозначном соответствии с классом, содержащим один объект. Число два соответствует классу всех классов, находящихся во взаимно-однозначном соответствии с классом, который состоит из объекта, использованного при определении числа один, плюс новый объект и т.д. Определение, построенное таким способом, избегает парадокса, поскольку соблюдает требование теории типов. Объекты, используемые при определении чисел, принадлежат одному и тому же типу. Однако оно требует введения дополнительного постулата. Определение каждого последующего числа в последовательности натуральных чисел требует нового объекта. Но поскольку натуральный ряд бесконечен, постольку должно предусматриваться и бесконечное количество объектов. Так в логической системе Рассела возникает аксиома бесконечности, а именно допущение о том, что любому заданному числу n соответствует некоторый класс объектов, имеющий n членов[8] .

5. Логические фикции и аксиома сводимости

В Principia Mathematica , труде, в котором Рассел совместно с Уайтхедом попытались последовательно развить предпосылки логицизма, теория типов, аксиома бесконечности и рассматриваемая ниже аксиома сводимости включаются в число логических предложений. Однако здесь возникает проблема, связанная со статусом данных положений. Характеристика различных уровней бытия, предложенная теорией типов, или аксиома бесконечности, характеризующая совокупность предметов в мире, выходит за рамки аналитического знания. Разрабатывая теорию типов, Рассел говорит о недопустимости определенной комбинации символов в языке логики. Однако то, что он имеет в виду, выходит за рамки символической комбинаторики, поскольку сами по себе символы основания для такого запрета не дают. Ограничения возможны только тогда, когда в расчет принимается определенная интенция значения. Стало быть, теория типов основана на онтологической предпосылке о допустимых видах значений и существенно от нее зависит.

Формулируя теорию типов, Рассел говорит о классах, но это не означает, что он допускает их реальное существование, поскольку это возрождало бы иерархическую структуру бытия в смысле Платона, и даже превосходило бы предложенное последним удвоение реальности, так как предполагало бы ее умножение ad infinitum соответственно умножению различных типов знаков. Кроме того, с реальностью классов связан ряд следствий, принять которые Расселу мешает установка на здравый смысл. Согласно способу построения классов из любой совокупности n предметов можно образовать 2 n классов. Например, взяв совокупность из трех предметов a , b , c , можно образовать восемь классов. Это следующие классы: нулевой класс, классы { a }, { b } и { c }; затем, { bc }, { ca }, { ab }, { abc }. Рассмотрим теперь совокупность всех вещей, существующих в мире. Очевидно, что число классов, образованных из этих вещей, будет больше числа их самих, поскольку 2 n всегда больше, чем n . Теперь, если мы принимаем реальность классов, получается парадоксальный вывод. Оказывается, что число всех действительно существующих вещей меньше, чем их имеется на самом деле. Рассел не принимает этого парадоксального вывода, выходя из положения тем, что дифференцирует понятие существования соответственно типам значений. Говорить о существовании индивидов – это совершенно иное, чем говорить о существовании составленных из них классов. Последнее есть лишь fa c on de parle r , от которого при желании всегда можно избавиться. Здесь возникает концепция неполных символов, рассматривающая классы как логические фикции. Надлежащая трактовка классов должна исключить их из перечня самостоятельных сущностей, а то, что мы рассматриваем как обозначение классов, должно быть сведено к обозначению сущностей, не вызывающих сомнений в своем существовании.