Смекни!
smekni.com

Физический и феноменологический миры (стр. 3 из 6)

Проявление Материи II: Волновая функция.

Материя проявляет себя феноменально не только посредством механического движения, но и посредством формы существования, фиксируемой волновой функцией. Квантовую физику можно определить как физику, связанную именно с данной возможностью проявления материи, точно так, как классическая механика связана с движением. В дополнение к условию "внешнего" пространства-времени, квантовая механика обращается к "внутренним" квантовым числам. Подобные новые физические количества представляют собой характеристики состояний элементарных частиц (электрического заряда, изоспина, шарма , цвета и т.д.). И вновь здесь имеют место некоторые ограничения, которые, как оказывается, имеют значение в определении создаваемых теорией объектов. Например, эмпирически найдено, что в области сильных ядерных взаимодействия нейтрон и протон неразличимы. Симметрия между двумя этими частицами называется изоспиновой симметрией. Применение теоремы Нетера позволяет нам получить из подобной симметрии закон сохранения, которые представляет собой закон сохранения изоспина для ядерных реакций.

Другое, возможно куда более впечатляющее подобного рода проявление, обращает наше внимание на факт того, что посредством физических значений невозможно индивидуализировать элементарную частицу в группе элементарных частиц такого же типа, если все они входя в простую квантовую систему (например, таким может быть каждый из многих электронов атома). Подобный факт, как видится поначалу, не наделен особым физическим содержанием. Функция Лагранжа (или Гамильтониан) становится здесь оператором, обрабатывающим волновую функцию, описывающую квантовое состояние системы. Эта Функция Лагранжа будет инвариантна относительно той симметрии, что представлена группой перестановок частиц в пределах системы. В ряде случаев перестановка частиц не ведет ни к какому изменению функции: функция так и остается симметричной. В других случаях некоторые перестановки ведут к изменению знака: функция становится ассиметричной. Эта противоположность теперь отражена в тех физических свойствах материи, которые известны в квантовой механике как корреляция между спином и статистикой.

Ассиметричные системы конституируются как комплексы частиц (и называются "фермионы") и отличаются полуинтегральным спином (1/2, 3/2, 5/2 и т.д.). Подобные частицы, как обладающие статусом материальных, являются предметом принципа исключения Паули, который утверждает, что два фермиона в том же самом положении в пространстве-времени не могут обладать теми же самыми квантовыми номерами. Этот принцип может объяснить, например, почему все электроны в одном атоме должны обладать различными системами квантовых номеров (электроны и представляют собой фермионы); и эти объяснения возвращают нас к проблеме, почему же атому необходимы разные орбиты электронов, почему материя не переживает коллапс и таким же образом почему материя допускает плавное и устойчивое сопряжение на макроуровне и почему проявляется химическое взаимодействие.

С другой стороны, симметричные системы конституируются при помощи частиц интегрального спина (0, 1, 2 и т.д.). Эти частицы, называемые бозонами, представляют собой частицы кругооборотных взаимодействий между частицами материи. Протон, например, представляет собой частицу кругооборотного электромагнитного взаимодействия между электронами, протонами и т.д. Для бозонов не действителен и принцип исключения Паули. Таким образом мы получаем фигуру суперпозиции бозонов в пространстве-времени, которая объясняет такие фундаментальные физические феномены как лазеры, сверхпроводимость и сверхтекучесть. Здесь, поэтому, мы сталкиваемся с равным образом глубокими, действительно наиболее существенными свойствами материи, которые представляют собой в некотором смысле физическую интерпретацию некоторых ограничений, связанных с симметрией и неразличимостью.

Проявление Материи III: Качественная прерывность.

С одной стороны, следовательно, мы получили объективные физические определения различных форм проявления материи (движения, излучения и т.д.), и, с другой стороны, мы обладаем феноменальными (качественными, морфологическими) проявлениями в смысле, близком свойственной нам до-теоретичности. Наш тезис здесь говорит о том, что феноменальные проявления также представляют собой форму проявления материи и что действительно можно думать о существовании некоторого рода феноменологической физики. Подобная феноменологическая физика должна, конечно, отличаться от стандартной фундаментальной физики: она качественная, макроскопическая и завершенная. Все же, тем не менее, она объективна.

Нам знакомы хорошо понятные способы, посредством которых физические теории позволяют обогатить их посредством пополнения свойственными форматами, специфическими для феноменологической реальности. Для физики, хотя она и в большей части ограничена количественной методологией, тем не менее приходится иметь дело с контрастными проявлениями материальности - цветом, звуком, температурой, - с теми, из которых сложен качественный, феноменальный мир. Физику, однако, не интересует то теоретическое обоснование, которое бы подобные резко обособленные виды способностей, из чего материальные проявления складываются или компонуются, могло бы показать как сущности, присущие миру качественного опыта. Наша задача, следовательно, заключена в том, чтобы изобрести научную методологию выделения подобного рода особенного, то есть науку о должным образом качественных модальностях проявления материи, способную перебрасывать мостик от количественного представления к качественному, или между физической и феноменологической модальностями проявления материальности, и равным же образом, что, вероятно, случится позже, превратить подобные представления в объект исследования своей особой теории.

Мы попытаемся объяснить качественную структуру феномена как результирующую в отношении физического существования базисного материального субстрата. Чтобы располагать констуитивом результирующей структуры нам необходимы три вещи:

Следует выделить два уровня действительности, микроуровень и макроуровень, и завершенными свойствами необходимо следует признать свойства объектов именно макроуровня.

Объекты макроуровня должны быть построены из объектов микроуровня как из своих частей, откуда нам следует быть готовыми каузально объяснять завершенную структуру исключительно ссылками на феномен микроуровня (причинный редукционизм).

Но, с другой стороны, мы должны быть готовы признать тот факт, что имеют место и целостные и структуральные или организмические свойства (морфологические признаки, признаки самореализации и т.д.), которые отличаются от тех структур или организмических свойств, которые соответствуют микроуровню и вовлечены в наше представление тем познанием, что соответствует микроуровню.

Здесь вполне очевидное предложение заключается в том, что качества проявляются в феноменологической действительности лишь локально, и их следует представить степенями соответствующих величин интенсивности: цвет, например, посредством интенсивности частот и отражательных способностей, качества горячего или холодного посредством температур и т.д. Подобные представления наилучшим образом сохранят те пространственные или темпоральные вариации, что способны в должной мере концентрировать собой качественную информацию. Но только лишь некоторые виды физических феноменов пригодны на то, чтобы поддерживать подобного рода вариации. Простые механические системы (маятники, например) выходят за рамки подобных отношений. С другой стороны, заряженность электрических рыб представляет собой явный качественный феномен. Базируясь на своем интуитивном предположении мы могли бы сказать, что качественные структуры существуют там, где некоторые мелкомодульные микроструктуры в достаточной мере равномерны для того, чтобы допустить грубозернистую морфологическую организацию, устраиваемую посредством разделений (разграничений) на макроскопическом уровне.

То же, что мы обсуждаем микроструктуры, равно как и обсуждаем ассоциированные виды прерывностей, зависит отчасти от собственных качеств человеческого механизма восприятия. Ключевая теоретическая идея, однако, как полагал Рене Том , допускает противопоставление между "равномерными" и "граничащими" сферами в допустимых пределах изменения интенсивности величин. Идея Тома заключена в том, что необходимая нам наука должна использовать как ее главный примитив качественную прерывность, которая должна служить критерием для определения дискетных изменений качеств (определяя, соответственно, и равномерность количественных изменений), реализуя в себе определение некоторой признаваемой парадигмы. Теория, результаты которой могли бы оказаться, таким образом, той наукой, что изучает подобные проявления материи, ассоциирующиеся с макроскопической прерывностью, возникающей внутри изменений интенсивности величин, и будет во многом подобна классической механике, которая в качестве науки о подобных проявлениях материи определяла их под именем движения в пространстве.