Смекни!
smekni.com

Методика преподавания математики в средней школе: Общая методика: Учеб посо­бие для студентов пед ин-тов по спец. 2104 «Математика» и21056 «Физика» /А. (стр. 10 из 21)

Математические понятия – важнейшая неотъемлемая часть науки и учебного предмета математики. Каждая математическая наука и учебная дисциплина начинается с первичных, основных неопределяемых понятий. Все другие определяются и называются определяемыми, выводными или производными. Это можно сделать в систематических курсах математических дисциплин, т.е. на определенном уровне развития учащихся.

На начальной ступени обучения учащиеся знакомятся с большинством математических понятий наглядно, путем созерцания конкретных примеров или практического оперирования ими, например, при счете их. При этом учитель опирается на жизненный опыт учащихся.

Способы введения мат. понятий на начальном этапе изучения математики:

1) первое знакомство с математическими понятиями в начальных классах школы фиксируется с помощью термина и символа, без описания или определения понятия. Например, фигуры треугольник, квадрат, прямоугольник - еще в детском саду. Термин «меньше» и символ 2< 9; термин «сложение» и символ «+» и т.д.;

2) появляются первые определения (2 кл.) – «Сложение одинаковых слагаемых называется умножением»;

3) некоторые понятия вводятся только с помощью термина (например, год, неделя, час, минута и др.);

4) описательное введение понятий (нумерация в пределах тысячи, меры длины);

5) некоторые понятия определяются генетически (окружность, 1 м

- это квадрат со стороной 1 м).

Велика роль пропедевтики алгебраического и геометрического материала, особенно в 5-6 классах, где наряду с систематическим курсом арифметики изучаются начала алгебры и геометрии. Например, в учебнике Латотина Л.А., Чеботаревского Б.Д. «Математика 4»: геометрические понятия – окружность, круг, угол, смежные и вертикальные углы, прямоугольный параллелепипед, объем; алгебраические понятия - уравнение, выражение и его значение.

Таким образом, в курсе математики ведется подготовка к изучению курсов алгебры и геометрии. Но не только на уроках математики, возможна пропедевтика и в других курсах, например, физики – понятие производной (мгновенная скорость), черчения – изображение пространственных фигур в стереометрии и др.

В отдельных случаях, когда изучение понятия представляет собой существенные трудности, период первоначального озна­комления с понятием растягивается во времени, на протяжении которого учащиеся многократно сталкиваются с понятием, по­степенно расширяя круг представлений о нем. Например, одно из важнейших понятий современного школьного курса матема­тики - функция. Усвоение этого понятия возможно лишь при ус­ловии перехода от статического к диалектическому мышлению, что совершается не вдруг. Само понятие функция вводится в седь­мом классе. Но в пятом и шестом классах сознание учащихся го­товится к восприятию этого понятия. В качестве пропедевтики понятия функция в учебниках пятого и шестого классов рассмат­риваются различные упражнения. Функция как зависимость, за­кон соответствия, соответствие между отдельными элементами некоторых множеств проявляют себя в таких упражнениях, как составление выражений, отыскание значений выражения в зави­симости от значений параметров, входящих в него. Функциональной пропедевтикой явля­ется изучение темы «Координатная плоскость».

Методика введения математических понятий

Организация введения понятий может быть реализована в рам­ках различных методов обучения: объяснительно-иллюстративно­го, когда учитель сам вводит новое понятие, и в рамках частично-поискового, когда учащиеся привлекаются к поиску нового опре­деления. Эти методы получили названия соответственно абстракт­но-дедуктивного и конкретно-индуктивного.

Схема применения конкретно-индуктивного метода:

- анализируется эмпирический материал (при этом, кроме индукции, привлекаются и другие логические методы: анализ, сравнение, абстрагирование, обобщение);

- выясняются общие признаки понятия, которые его характеризуют;

- формулируется определение;

- определение закрепляется путем приведения примеров и контрпримеров;

- дальнейшее усвоение понятия и его определения происходит в процессе их применения.

Схема применения абстрактно-дедуктивного метода:

- формулируется определение понятия;

- приводятся примеры и контрпримеры;

- дальнейшее усвоение понятия и его определения происходит в процессе их применения.

Абстрактно-дедуктивный метод применяется обычно в тех случаях, когда введение понятия хорошо подготовлено предшествующим обучением. Например, после введения понятия параллелограмма вводится понятие прямоугольника.

При том и другом методах содержанием обучения является выделение существенных свойств понятия и отделение их от несущественных. Конкретно-индуктивный метод требует больше учебного времени при своем использовании на уроке, но обеспечивает большую активность учащихся и обратную связь, на основании которой учитель делает выводы об эффективности работы по изучению понятий.

Введению определения на уроке предшествует работа учите­ля по выделению существенных и несущественных свойств понятия, определение которого подлежит изучению, анализу логичес­кой структуры этого определения, подбору примеров и контрпри­меров для закрепления и возможностей их вариации, анализу си­туаций, в которых наиболее часто встречается вводимое поня­тие. Анализ заканчивается выбором метода введения определе­ния.

Рассмотрим пример подготовки учителя к уроку по теме «Смежные углы». Определение смежных углов име­ет два существенных свойства: наличие у обоих углов общей сто­роны и то, что вторые стороны этих углов являются дополнитель­ными полупрямыми. Эти свойства связаны между собой конъюнктивно. Объект подпадает под понятие, если имеет место каждое свойство. Это значит, что контрпримеров этому понятию можно привести три: когда отсутствует первое или второе или оба свой­ства сразу. Какими несущественными свойствами обладает это понятие, то есть какие свойства допускают вариации? Это соотно­шения между величинами углов, произвольность расположения на плоскости. В методике Н.Н. Кабановой-Меллер предлагает­ся вместе с учащимися выделять и проговаривать не только суще­ственные свойства, но и несущественные. Такая работа позволя­ет учащимся легче узнавать объекты в наиболее часто встречаю­щихся задачных ситуациях, в которых участвуют смежные углы. Такими ситуациями для смежных углов являются ситуации, ког­да две прямые пересечены третьей прямой, в треугольниках, в разных видах четырехугольников.

Поскольку вводимое понятие смежных углов не очень слож­ное, то учитель может предпочесть частично-поисковый метод введения понятия. При этом цель урока может быть сформулиро­вана по-разному: получить определение смежных углов с помо­щью учащихся, научить учащихся его формулировать, узнавать смежные углы в различных ситуациях, подводить под определе­ние понятия смежных углов, исправлять ошибочные определения.

Рассмотрим фрагмент урока по введению понятия смежные углы. Классу представлены следующие рисунки:

а) б) в) г) д)

Далее процесс восприятия и осознания направляется вопроса­ми учителя к предложенным рисункам:

- назовите рисунки, на которых изображены два угла, имеющие одну общую сторону;

- назовите рисунки, на которых сторона одного угла является дополнительной полупрямой для стороны другого угла;

- на каких рисунках изображены углы, которые одновременно удовлетворяют двум предъявленным требованиям?

В беседе роль учащихся может быть усилена, а вопросы можно поставить так, что уровень самостоятельности учащихся повы­сится:

- что общего на рисунках а), б) и г)?

- что общего на рисунках б), в) и г)?

- назовите рисунки, изображения на которых удовлетворяют двум выделенным требованиям.

Далее учитель сообщает термин «смежные углы» и просит уче­ников сформулировать соответствующее определение. Для зак­репления выделенных существенных свойств учитель дает зада­ние обосновать, почему углы на рисунках а), в) и д) не являются смежными. Далее рассматривается, чем различаются смежные углы на рисунках б) и г) и чем вообще могут отличаться друг от друга пары смежных углов.

Психологи (В.И. Зыкова, М.А. Холодная) считают, что при изучении всякого понятия должно быть установлено соответствие нового знания личному интеллектуальному опыту учащихся, в ко­тором могут содержаться противоречия с новыми знаниями. С от­ношением «быть смежными» учащиеся сталкивались в быту: смеж­ные - соседние участки земли, помещения. Необходимо подчерк­нуть сходство и различие вновь вводимого понятия с имеющимися.

Интересным для учащихся может оказаться перевод на рус­ский язык различных математических терминов: радиус - спица колеса, хорда - струна, диаметр - поперечник (с греч.) и т. д., что раскрывает первоначальный смысл понятий, их происхожде­ние и связь математики с окружающей действительностью.

Применению всякого понятия на практике при решении задач предшествует узнавание его в некоторой конкретной ситуации, где оно может быть представлено в более или менее скрытой фор­ме. За этим при решении задач следуют обоснование узнавания (подведение под понятие) и выведение следствий (использование понятия).

В методике преподавания математики принято в каче­стве первых упражнений на закрепление вновь вводимых поня­тий предлагать упражнения на узнавание объектов с дальнейшим подведением под определение. Например, такими упражнениями на узнава

ние смежных углов могут быть задания выделить смеж­ные углы на рисунке и обосновать свои утверждения.