Это же понятие смежных углов может быть введено по-другому.
Например, учитель просит учащихся построить в тетради и на доске любой угол, а затем продолжить одну из его сторон - построить дополнительную полупрямую. Далее с помощью учащихся выясняется, какими существенными свойствами обладают два полученных угла, рассматриваются различные чертежи из тетрадей учеников в качестве вариаций несущественных свойств, затем рассматриваются контрпримеры.
Дальнейшее усвоение понятия «смежные углы» проходит на этапе применения понятия.
Применение понятий и их определений
Знание определения еще не гарантирует усвоения понятия. Один из аспектов формализма в математических знаниях состоит именно в том, что некоторые учащиеся, зная точную формулировку определения, не распознают определяемый объект в различных ситуациях, где он встречается. Поэтому методика обучения должна разрабатывать систему работы с определениями, чтобы преодолеть возможный формализм в их усвоении.
В практике решения задач при оперировании понятиями и их определениями актуальными являются умения: 1) подведение под определение; 2) подведение под понятие; 3) выделение «зоны поиска»; 4) выведение следствий из определения.
Названные умения можно формировать в рамках приемов умственной деятельности - совокупности мыслительных операций, направленных на решение задач определенного типа.
Структура приема подведения под определение зависит от логического строения определения, то есть от того, каким образом, конъюнктивно или дизъюнктивно, связаны существенные свойства в определении.
Рассмотрим несколько определений.
1. Целым выражением называется выражение, составленное из чисел и переменных с помощью действий сложения, вычитания, умножения и деления на число, отличное от нуля.
2. Целые и дробные выражения называются рациональными.
3. Треугольником называется фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки.
4. Трапецией называется четырехугольник, две стороны которого параллельны, а две другие - нет.
5. Арифметическим квадратным корнем из числа а, называется неотрицательное число, квадрат которого равен а.
6. Два вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.
Чем различаются действия подведения под определение в случаях 1, 2 и 6 от аналогичных действий в случаях 3, 4, 5?
При подведении под определение, в котором существенные свойства связаны конъюнктивно (примеры 3,4,5), для отнесения некоторого объекта к множеству объектов, названных определенным термином, необходимо проверить наличие всех существенных свойств. Например, чтобы некоторое число b было арифметическим квадратным корнем из числа а, требуется выполнение двух условий:
.Если существенные свойства связаны между собой дизъюнктивно, то для отнесения объекта к множеству объектов, подпадающих под это понятие, достаточно выполнения отдельных существенных свойств. Например, чтобы некоторое выражение можно было назвать рациональным, достаточно, чтобы оно было целым или дробным. Причем союз «или», который подразумевается в дизъюнктивно построенных определениях, обладает неразделительным смыслом. Например, чтобы выражение назвать целым, требуется, чтобы оно было построено с помощью любых действий, перечисленных в определении 1.
Рассмотрим, как могут выглядеть рассуждения при подведении под определение, например, вписанного угла.
Вначале необходимо вспомнить определение: вписанным углом называется угол, вершина которого лежит на окружности, а стороны пересекают окружность. Затем выделяются существенные свойства определения: 1) угол; 2) вершина лежит на окружности; 3) стороны пересекают окружность. Выясняется, что необходимо проверить наличие каждого свойства согласно структуре данного определения. Затем на каждом из рисунков
проверяется наличие перечисленных свойств и формулируются соответствующие выводы.
Иногда применение приема подведения объекта под определение затруднено в силу того, что определение дано в форме, которой трудно воспользоваться и которая требует предварительного анализа и переформулирования. Рассмотрим, например, определение квадратного уравнения с одной переменной. Квадратным называется уравнение вида:
ах2 + bх + с = 0, где а 0. Чтобы ответить на вопрос, являются ли, например, равенства (*) квадратными уравнениями с одной переменной, следует самостоятельно выделить существенные свойства понятия, а именно: что это уравнение, что оно содержит одну переменную, что оно содержит в качестве одного из слагаемых вторую степень переменной со своим коэффициентом и не содержит степени переменной выше второй.
у-2х2=0; Зх2+5; 2х3+х2-5 = 0; 7х2-6 = 0 (*)
Следовательно, чтобы подвести некоторый объект под понятие согласно его определению, учащиеся должны вспомнить определение, выявить его существенные свойства, установить связи между ними, например, с помощью вопроса, все ли существенные свойства должны выполняться, затем проделать операции, адекватные логическому строению определения, - проверить наличие требуемых свойств в рассматриваемом объекте и сделать вывод относительно принадлежности рассматриваемого объекта к понятию: если существенные свойства связаны конъюнктивно, то для отнесения объекта к понятию необходимо выполнение всех свойств, а если дизъюнктивно - то некоторых.
Опыт показывает, что выполнение нескольких упражнений на подведение под определение способствует не только осознанию определения, но и его непроизвольному запоминанию.
Несколько сложнее выглядит прием подведения под понятие. Как известно, чтобы отнести некоторый объект под какое-либо понятие, необязательно пользоваться определением. Можно подводить под признаки понятия. Чем воспользоваться: определением или признаком, которым признаком из имеющихся - все это диктуется условиями конкретной задачи.
Рассмотрим, например, задачу «В параллелограмме ABCD точка Е- середина стороны ВС, a F - середина стороны AD. Докажите, что четырехугольник BEDF- параллелограмм». Доказательство требуемого факта может быть основано на определении параллелограмма. Тогда предстоит доказывать параллельность BF и ED. Но доказательство можно построить на одном из признаков параллелограмма. И тогда предстоит доказывать, что либо диагонали BD и FE точкой пересечения делятся пополам, либо стороны BE и FD равны и параллельны, либо противолежащие стороны этого четырехугольника попарно равны.
Все операции: актуализация определения и признаков, выбор из них необходимого средства, подведение под определение или выбранный признак и составляет из себя прием подведения под понятие.Тесно связан с названными еще один прием - выделение «зоны поиска» некоторого понятия. «Зона поиска» это и есть совокупность определения и различных признаков. Этот прием можно эффективно использовать в начале систематического курса геометрии, доказывая равенство отрезков и углов. Например, учащиеся в ходе изучения курса начинают систематизировать достаточные условия равенства отрезков. По мере изучения геометрического материала этот список дополняется. Список полезно вести всем учащимся, например, на последней странице тетради. Приведем в качестве примера «зону поиска» равных отрезков. Итак, равные отрезки можно искать в следующих ситуациях: 1) два отрезка имеют равную длину; 2) два отрезка являются соответствующими сторонами равных треугольников; 3) два отрезка являются боковыми сторонами равнобедренного треугольника; 4) два отрезка являются противоположными сторонами параллелограмма, любыми сторонами ромба; 5) один отрезок получен из другого некоторым движением; 6) отрезки являются половинами или равными частями равных отрезков и т. д.
Последний из рассматриваемых приемов - прием получения следствий - заключается в том, что при решении задачи перечисляются следствия из наличия какого-либо понятия, то есть выделяются все свойства этого понятия, содержащиеся в определении и полученные с помощью доказательств. Этот прием облегчает организацию обучения решению задач в начальном курсе геометрии, когда для учащихся характерна жалоба: «Я не умею начинать решать задачу». Он составляет основной смысл решения задачи синтетическим методом, движения мысли от условия к заключению.
Рассмотрим пример. Доказать, что в равных треугольниках соответственные медианы равны. Прием получения следствий в применении к данной задаче заключается в том, что перебираются все данные условия и из каждого из них делаются возможные выводы.При этом приходится отвечать на вопросы: 1) что значит, что треугольники равны; 2) что значит, что BD и
- медианы?Рассмотрением перечисленных приемов мы переходим от понятий и их определений к процессу решения задач, в ходе которого формируется понятие.