В методике преподавания математике выделены различные формы самоконтроля, проводимые после завершения этапа реализации намеченного плана. Приведем примеры таких форм.
1.Проверка с помощью частного случая. Например, если при решении неравенства получен некоторый числовой промежуток, то можно проверить некоторые конкретные значения переменной из этого промежутка.
2. Проверка совпадения размерности ответа с требованием задачи. Например, при нахождении пути значение скорости (км/ч) умножается на значение времени (ч). Умножение наименований должно дать наименование длины (км).
3. Проверка симметричности ответа, если в условии задачи какие-то данные симметричны. Например, если уравнения, входящие в систему, симметричны относительно переменных, то и найденные значения различных переменных должны быть равны.
4. Проверка ответа по здравому смыслу. Например, скорость пешехода не может быть равной 15 км/ч, количество рабочих не может быть дробным и т. д.
5. Проверка с помощью грубой прикидки. При этом данные грубо округляются и выясняется порядок возможного результата.
6. Проверка с помощью обратной задачи или с помощью другого способа решения.
7. Проверка текстовых задач, решенных с помощью составления уравнения, по смыслу. При этом необходимо, чтобы все промежуточные величины, зависящие от х, которые появляются в ходе решения задачи, имели бы смысл при полученном значении переменной.
Приведенные формы проверки, кроме 6, не дают полной гарантии правильно найденного и выполненного решения, но, тем не менее, с ними полезно ознакомить учащихся.
Изложенные выше советы для решения задач позволяют решать многие задачи, но, разумеется, не могут служить рецептом для решения любой задачи. Эти советы, многие из которых сформулировал Д. Пойа, правильно ориентируют решающего задачи на поиск решения, сокращают время решения многих задач, повышают вероятность отыскания верного и рационального способа решения задач. Единого же рецепта для решения любых
Организация обучения решению математических задач
Фронтальное решение задач. Под фронтальным решением задач обычно понимают решение одной и той же задачи всеми учениками класса в одно и то же время. Организация фронтального решения задач может быть различной.
Устное фронтальное решение задач наиболее распространено в IV-VII классах, несколько реже, хотя и находит применение, в старших классах средней школы. Это прежде всего выполняемые устно упражнения в вычислениях или тождественных преобразованиях и задачи-вопросы, истинность ответов на которые подтверждается устными доказательствами. В настоящее время учителя математики IV-VII классов почти на каждом уроке проводят "пятиминутки" устных упражнений. К сожалению, часто этим и ограничивается выполнение устных упражнений. А надо отметить, что одной из задач обучения математике является обучение быстрым устным вычислениям. Решения этой задачи надо добиваться на всех этапах обучения, поэтому там, где это возможно (а не только на "пятиминутках" устного счета), вычисления следует выполнять устно. Если ученики научатся устно выполнять вычисления и несложные преобразования, то на уроках математики, физики, химии освободится значительная часть времени, которое сейчас расходуется на нерациональное выполнение вычислений и выкладок.
При организации устных фронтальных упражнений следует учесть, что использование табличек, таблиц, кодоскопа и других средств представления учащимся устной задачи значительно экономит время устных упражнений и оживляет уроки математики.
Таблички изготавливает обычно учитель или отдельные ученики по его заданию. Например, таблички с заданиями для устных вычислений при изучении умножения дробных и целых чисел (удобные размеры табличек 300 х 150мм).
Таблицы для устных упражнений могут иметь различную форм и применяются неоднократно с различными заданиями.
Как таблички, так и таблицы могут быть изображены на пленке и спроецированы на экран или доску через кодоскоп. Изготовление табличек и таблиц - более трудоемкое дело, чем кодопозитивов, а результаты использования практически равноценны.
Письменное решение задач с записью на классной доске. В практике обучения немало таких ситуаций, в которых удобнее, чтобы одну и ту же задачу решали все ученики класса одновременно с решением этой же задачи на доске. При этом задачу на доске может решать либо учитель, либо ученик по указанию учителя.
Наиболее часто такую организацию решения задач на уроках математики применяют: а) при решении первых после показа учителем задач по ознакомлению с новыми понятиями и методами; б) при решении задач, самостоятельно с которыми могут справиться не все ученики класса; в) при рассмотрении различных вариантов решения одной и той же задачи - для сравнения и выбора лучшего варианта; г) при разборе ошибок, допущенных несколькими учениками класса при самостоятельном решении задачи и т.д. Во всех этих случаях бывает полезно и коллективное решение (или коллективный разбор решения задач).
Рассмотрим подробнее, как можно провести сравнение различных вариантов решения задачи. Учитель может при фронтальном устном анализе условия задачи наметить вместе с учениками несколько вариантов решения задачи. Некоторые из них как нерациональные могут быть сразу отвергнуты. Другие же не отвергнутые варианты для лучшего рассмотрения, оценки и сравнения стоит записать на доске. В этих целях можно сразу вызвать двух-трех учеников к доске для одновременного решения задачи разными способами (если позволяют размеры доски). Надо только учесть, что руководство решением задачи в этом случае требует некоторого мастерства от учителя: необходимо правильно распределить свое внимание между учащимися, решающими задачу у доски, и остальными учениками класса. Нужно также предусмотреть, чтобы внимание учащихся класса, решающих задачу, не рассеивалось действиями учеников у доски. Можно варианты решения воспроизводить на доске поочередно, но это займет больше времени. Для ускорения работы учитель может сам быстро выполнить на доске необходимые записи некоторых вариантов решения. Возможно также использовать кодоскоп, с помощью которого можно воспроизводить заготовленные заранее записи других решений задачи.
Письменное самостоятельное решение задач. Наиболее эффективной является такая организация решения математических задач, при которой ученики обучаются творчески думать, самостоятельно разбираться в различных вопросах теории и приложений математики. Самостоятельное решение учащимися задач на уроках математики имеет многие преимущества.
Во-первых, оно значительно повышает учебную активность учащихся, возбуждает их интерес к решению задач, стимулирует творческую инициативу. Таким образом, повышается эффективность урока. Самостоятельное решение задач развивает мыслительную деятельность учащихся, а в этом заключается одно из основных назначений задач и упражнений на уроках математики.
Во-вторых, не имея возможности копировать решение задачи с доски, ученик вынужден сам разбираться в решении задачи, а потому и лучше готовиться к урокам математики.
В-третьих, самостоятельное решение математических задач часто сокращает время, необходимое для опроса учащихся на уроках математики, так как оценивать успехи учащихся в некоторых случаях можно и по итогам самостоятельного решения задач.
В-четвертых, учитель получает возможность направлять индивидуальную работу учеников по решению задачи, предотвращать ошибки, указывать пути их исправления.
Допустимы различные формы организации самостоятельного решения задач учащимися.
Некоторые учителя так организуют самостоятельные работы по решению задач на уроках математики: учитель подбирает задачи; в процессе работы учитель помогает некоторым ученикам советом, как лучше их решить, другим он советует обратиться к учебнику, третьи справляются с работой без помощи учителя. Учитель все время наблюдает за работой учеников, отмечая, кому из учеников и в чем он помог. Затем самостоятельная работа проверяется и оценивается с учетом степени самостоятельности ученика. При такой организации самостоятельной работы осуществляется и обучение, и контроль знаний по изучаемому разделу математики. Чаще всего учитель заранее предопределяет цели самостоятельных работ по решению задач. Такие работы могут быть обучающими новым знаниям, умениям и навыкам, могут быть предназначены для закрепления изученного и тренировки в применении теоретических сведений, могут быть предложены с целью проверки подготовленности учащихся по изученным вопросам. На обучающих самостоятельных работах по решению математических задач учитель может оказывать помощь отдельным учащимся, а может предложить самостоятельное решение задачи после предварительного ее анализа и составления плана решения.
Существуют и такие формы самостоятельных обучающих работ по математике, при выполнении которых учащиеся самостоятельно изучают небольшой теоретический материал, разбирают образцы решения задач, предложенные учителем, самостоятельно решают аналогичные задачи.
Для лучшего проведения самостоятельных работ учащихся по решению математических задач полезно перед началом такой работы проводить инструктаж, в котором четко указать, что должны выполнить учащиеся в такой работе, каков порядок ее выполнения, сроки и пр. Желательно после проверки правильности самостоятельных решений проанализировать с учащимися результаты такой работы. Это возможно на следующих уроках или на консультациях.
Комментирование решения математических задач. Комментирование решения задач заключается в следующем: все ученики самостоятельно решают одну и ту же задачу, а один из них последовательно поясняет (комментирует) решение. Некоторые учителя превращают комментирование в запись под диктовку: один ученик воспроизводит голосом все, что он записывает в тетрадь (без каких-либо пояснений), а все остальные поспешно записывают сказанное им. Ясно, что такое применение комментирования не приносит должной пользы.