Комментирование обозначает объяснение, толкование чего-нибудь. Именно так и следует понимать комментирование при решении математических задач. Ученик-комментатор объясняет, на каком основании он выполняет то или иное преобразование, проводит то или иное рассуждение, построение. При этом каждый шаг в решении задачи должен быть оправдан ссылкой на известные математические предложения. Вот пример комментирования: "Доказать, что сумма трех последовательных натуральных чисел не может быть простым числом.
Обозначим первое из этих чисел буквой n. Тогда два следующих за ним числа запишутся n+1, n+2, так как второе на 1, а третье на 2 больше первого числа. Запишем сумму этих трех чисел и преобразуем ее. Сначала раскрываем скобки, применяя сочетательный закон сложения. Затем приводим подобные члены. Вынося общий множитель (по распределительному закону), получаем результат. Полученное выражение есть произведение двух множителей 3 и n +1, а потому оно не может быть простым числом ни при каких натуральных значениях n."
Такое комментирование приносит явную пользу при решении задач. Учащиеся, даже недостаточно подготовленные по математике, услышав объяснение следующего этапа в задаче, постараются выполнить его самостоятельно. Правда, такое объяснение требует от учеников не только формального решения задачи, но, что очень важно, и понимания существа выполняемого преобразования, активной работы мысли. Но ведь этого и следует добиваться при решении задач.
Индивидуальное решение задач.
Необходимость индивидуального подхода при организации обучения решению задач. Фронтальное решение учебных математических задач не всегда приводит к желаемым результатам в обучении математике. При фронтальной работе все ученики класса решают одну и ту же задачу. Для одних учащихся эта задача может оказаться очень легкой, и они при решении такой задачи практически не почерпнут ничего нового. У других, наоборот, задача может вызвать серьезное затруднение. Поэтому необходим учет индивидуальных особенностей учащихся и в связи с этим индивидуальный подбор задач. Задачи следует подбирать и систематизировать так, чтобы, с одной стороны, учитывались возможности и способности ученика, с другой стороны, его способности развивались бы.
Задача учителя заключается, следовательно, в том, чтобы выяснить подготовку, возможности и способности к изучению математики каждого ученика класса и в соответствии с этим организовать решение математических задач. Важна индивидуализация учебных математических задач по силам и возможностям учащихся. Это позволяет овладеть необходимыми умениями и навыками слабым ученикам и в значительной степени совершенствоваться более сильным.
Индивидуализация самостоятельных работ учащихся по решению задач. В условиях, когда все ученики самостоятельно решают одну и ту же задачу, учитель может учитывать индивидуальные особенности учащихся лишь при оказании им помощи в решении задачи, при проверке выполненной работы. При этом не полностью учитываются возможности учащихся. Для более полного учета способностей и математической подготовки учащихся, использования их возможностей необходимо предлагать для самостоятельного решения учащихся не одинаковые, а различные задачи с учетом индивидуальных особенностей ученика. Но поскольку в классе есть примерно равные по успехам в математике ученики, то можно подбирать задачи не для каждого ученика в отдельности (это было бы затруднительно для учителя), а для отдельных групп школьников класса. В этих целях полезно использовать издающиеся теперь "Дидактические материалы по алгебре", "Дидактические материалы по геометрии" для различных классов. При такой постановке обучения слабые ученики, справившись самостоятельно или при помощи учителя с простейшими задачами, обретают веру в свои силы. Сильные же учащиеся имеют возможность совершенствовать свои способности и познания в математике. Разумеется, подбор индивидуальных заданий преследует цель для каждой выбранной учителем группы учащихся составить систему задач. Эти группы не должны иметь постоянного состава: по мере овладения необходимыми знаниями учащиеся "переводятся" из группы для менее подготовленных в другую - для более подготовленных.
Индивидуализация самостоятельных работ учащихся по устранению пробелов в знаниях математики. Исключительное значение приобретают самостоятельные работы учеников по устранению пробелов в знаниях математики. Такие пробелы могут быть выявлены с помощью проверочных и контрольных работ, а также при решении задач на уроке или дома. Ученикам, работающим над устранением пробелов в своих знаниях по математике, надо указать в тетради допущенные ошибки. При этом сильным ученикам достаточно подчеркнуть неверный результат, а ошибку такой ученик найдет сам. Одним ученикам полезно подчеркнуть допущенные ошибки, а некоторым, наиболее слабо подготовленным, исправить. В тетрадях указываются разделы учебника, которые ученик обязан восстановить в своей памяти, и выписываются .задачи (можно указать номера задач из задачников или учебников), которые надлежит ученику решить, чтобы восполнить имеющийся пробел в знаниях и умениях. Конечно, задачи подбираются с учетом причин, вызвавших ошибку. Дело в том, что одна и та же ошибка может быть допущена по различным причинам и устранять надо не ошибку, а причину, ее породившую. Такая организация решения задач по ликвидации пробелов в знаниях школьников приносит большую пользу, чем фронтальные работы над ошибками. При этом учитываются как индивидуальные особенности учащихся, так и характер изучаемого материала.
Домашнее решение задач учащимися. Содержание задач и упражнений, предлагаемых для домашней работы учащихся, должно быть подготовлено предшествующей работой на уроке. Это не означает, что для домашнего решения должны предлагаться лишь задачи, аналогичные решенным в классе. Такие домашние задания мало помогают усвоению математики. Решая домашние задачи "как в классе", ученики в лучшем случае прибегают к аналогии, а одной аналогии для обучения решению задач недостаточно. При такой работе ученики, как правило, сначала решают задачи (выполняют письменное задание), а затем читают учебник по математике. Порядок же должен быть иной: сначала повторение по учебнику теоретических сведений, затем решение задач.
Домашнее задание имеет целью не только повторение изученного на уроке, но и дальнейшее совершенствование математических знаний, умений и навыков. С учетом этого оно и должно быть составлено. Учитель дает необходимые указания по решению домашних задач, однако не устраняет всех трудностей, которые должны преодолеть учащиеся в процессе решения домашних задач. Ученики, решая задачи самостоятельно дома, обязаны проявлять свою инициативу, смекалку и настойчивость, мобилизовать для решения задач свои знания. Домашние задания по решению задач целесообразно связывать с углублением и уточнением изученного, с открытием каких-то новых его сторон.
Поскольку ученики обычно имеют индивидуальные особенности, различную подготовку по математике, следует индивидуализировать домашние задания по решению математических задач. При этом надо учитывать многие факторы: ученики при решении домашних задач должны устранить пробелы в знаниях (у кого они имеются), закрепить приобретенные на уроке знания, совершенствовать их. Через индивидуальные домашние задания (параллельно с работой на уроке) можно выявить наклонности отдельных учащихся, воспитывать у них увлечение математикой. Посильные же задания для слабых и отстающих учащихся помогут им преодолеть многие трудности в обучении решению задач. Надо заметить, что ученики с особым желанием решают задачи, предложенные им в индивидуальном порядке. Такие задания можно заготовить на специальных карточках.
Занятия № 9, № 10. Тема «Модели обучения, построенные с учетом психологических закономерностей умственного развития учащихся».
Несмотря на объективные трудности, с которыми сталкивалась школа, на протяжении всей ее истории не прекращались попытки разработать и внедрить в практику образования психологически ориентированные модели обучения, построенные с учетом психологических механизмов умственного развития учащихся и связанные с созданием инновационных форм и методов образовательного процесса.
Перечислим основные из них. Модель обучения — это план действий педагога при осуществлении учебного процесса; основу этого плана составляет преобладающая учебная деятельность учащихся, которую выстраивает учитель. Согласно этому определению, базовым основанием для разграничения разных моделей обучения является заложенный в них в качестве ориентира характер учебной деятельности (Кларин, 1997).
1. «Свободная модель». В процессе обучения в максимальной мере учитывается внутренняя инициатива ученика. При наличии определенной помощи со стороны учителя ребенок тем не менее сам определяет интенсивность и продолжительность своих учебных занятий, свободно планирует собственное время, самостоятельно выбирает средства обучения. Отсутствует сколько-нибудь жесткая система педагогических воздействий. Напротив, поощряется импровизация и детей, и учителя относительно как содержания, так и способов обучения. Разновидности этой модели («свободный день», «свободный класс» и т. и.) объединяет неформальное отношение к процессу обучения: отсутствие классно-урочной системы, обязательных учебных программ, контроля и оценки знаний учащихся. Ключевой психологический элемент — «свобода индивидуального выбора» (Р. Штайнер, Ф. Г. Кумбе, Ч. Сильберман и др.).