Смекни!
smekni.com

Методика преподавания математики в средней школе: Общая методика: Учеб посо­бие для студентов пед ин-тов по спец. 2104 «Математика» и21056 «Физика» /А. (стр. 7 из 21)

Эффективность беседы зависит от умелого подбора вопросов, которые направляют беседу (вопросов не должно быть много, они не должны быть слишком просты, между вопросами следует выдерживать паузы достаточной длины). Полезно учебный материал разбивать на смысловые части.

Беседа позволяет активизировать мыслительную деятельность учащихся, повысить их интерес, способствует хорошему усвоению материала, развитию мышления и способностей учащихся. С другой стороны, она требует большей, чем при рассказе, затраты времени. При беседе сильно сказываются индивидуальные различия учащихся, многие из них не успевают отвечать на вопросы учителя. Активное участие в беседе часто принимают лишь отдельные ученики, другие – пассивны.

Источником знаний учащихся может не только живое слово учителя, но и печатное слово. Учебники, пособия, научно-популярная литература и журналы являются не только источниками новой информации, но и дают учащимся возможность закрепления, расширения и углубления приобретенных на уроках знаний. Работа с книгой вовлекает учащихся в овладение методами самообразования, которые должны способствовать развитию дарованной от природы каждому ребёнку склонности к познанию, исследованию окружающего мира.

Наглядные методы обучения иногда подразделяют на метод иллюстраций и метод демонстраций. Метод иллюстраций пред­полагает показ учащимся различных иллюстративных по­собий: плакатов, таблиц, схем, рисунков из учебника, зарисовок и записей на доске, моделей геометрических фигур, натуральных предметов и т. д. Метод демонстра­ций обычно связан с демонстрацией приборов, опытов, показом кинофильмов, диафильмов, слайдов, использованием учебного телевидения, магнитофон­ных записей и т. д.

Существует несколько методических условий успешного применения наглядных средств обу­чения: 1) хорошее обозрение наглядного пособия; 2) по­становка учебной цели, четкое выделение главного при демонстрации пособия; 3) умелое сочетание слова и показа средства наглядности; осуществление ориентации дейст­вий учащихся на достижение учебной цели с помощью средства наглядности; 4) привлечение учащихся к на­хождению желаемой информации (с помощью наглядного пособия), постановка перед ними проблемных заданий.

Практический показ способов деятельности при обучении математике применяется, когда учитель демонстрирует способ решения задачи, доказательства теоремы, образец выполнения какого-либо задания, например, деления многочлена на многочлен, и т.д.

Иногда подразделяют методы обучения на «новые» и «старые», традиционные. При этом проводится мысль, что традиционные методы якобы изжили себя, а «новые» методы активно рекламируются. Под «старыми» понимаются объяснительно-иллюстративные методы. Традиционные методы обучения разрабатывались в свое время наиболее опытными педагогами, формировались в результате длительной практики обучения. Учитывая все большее сокращение времени на обучение математике в школе, необходимо максимально использовать этот бесценный опыт. Опираясь на психологические закономерности и используя ряд приемов обучения, можно добиться того, чтобы при использовании объяснительно-иллюстративных методов максимально активизировалась мыслительная деятельность учащихся.

Репродуктивный метод

Для приобретения учащимися навыков и умений на основании знаний, полученных в результате объяснительно-иллюстративного метода, и для достижения более высокого уровня знаний используется репродуктивный метод. Учитель системой заданий организует деятельность школьников по неоднократному воспроизведению сообщенных им знаний и показанных способов деятельности. Учитель предлагает задания, а учащиеся выполняют их, используя знания в знакомой ситуации по образцу. Примером может служить выполнение учащимися простейших упражнений на применение полученной формулы. При их выполнении деятельность учащихся носит форму возобновления изученного. Таким образом, главным признаком репродуктивного метода являются воспроизведение и повторение учениками способа деятельности по заданиям учителя.

Существенную роль при осуществлении репродуктивного метода в обучении математике играет алгоритмизация. Под алгоритмом понимается точное обще­понятное предписание о выполнении в определенной последова­тельности операций для решения любой из задач, Применение алгоритмов в обучении представляет одну из форм предъявления учащимся ориентиров для осуществления четко обозначенной деятельности, например, алгоритм решения квадратного уравнения. Использование учащимися известного им алгоритма по заданию учителя характеризует прием репродуктивного метода.

Повышению эффективности репродуктивного метода служит использование программированных материалов, которые обеспечивают обратную связь и самоконтроль.

Программированное обучение — это такое обучение, когда решение задачи представлено в виде строгой последовательности элементарных операций, в обучающих программах изучаемый материал подается в форме строгой последовательности кадров, каждый из которых содер­жит, как правило, дозу нового материала и контрольный вопрос или задание.

Программированное обучение предусматривает:

— правильный отбор и разбивку учебного материала на небольшие дозы;

— частый контроль знаний;

— переход к следующей дозе учебного материала лишь после озна­комления учащегося с правильным ответом или характером допущен­ной им ошибки;

— обеспечение возможности каждому ученику работать со свойст­венной ему, индивидуальной скоростью усвоения, что является необ­ходимым условием активной самостоятельной деятельности ученика по усвоению учебного материала.

В эпоху компьютеризации программированное обучение осуществ­ляется с помощью обучающих программ, которые определяют не только содержание, но и процесс обучения. Существуют две различные системы программирования учебного материала — линейная и раз­ветвленная программы с элементами циклической, отличающиеся друг от друга некоторыми важными исходными предпосылками и структурой. Сравнивая две системы программирования учебного мате­риала, можно отметить, что при линейном программировании ученик самостоятельно формулирует ответы на контрольные вопросы, при разветвленном он лишь выбирает один из нескольких готовых ответов. В этом преимущество линейной программы.

Программированное обучение перспективно в осуществлении принципа индивидуального подхода, своевременной обратной связи. Оно может осуществляться с применением обучающих ма­шин или в виде безмашинного обучения, использующего программи­рованные учебники. Практика показала, что программированное обу­чение полезно и может применяться в широкой практике школьного обучения.

В качестве преимуществ программированного обучения можно отметить: дозированность учебного материала, который усваивает­ся безошибочно, что ведет к высоким результатам обучения; инди­видуальное усвоение; постоянный контроль усвоения; возможность использования технических автоматизированных устройств обуче­ния.

Существенные недостатки применения этого метода: не всякий учебный материал поддается программированной обработке; метод ограничивает умственное развитие учащихся репродуктивными опе­рациями; при его использовании наблюдается дефицит общения учи­теля с учащимися; отсутствует эмоционально-чувственная компонен­та обучения.

Таким образом, репродуктивный метод может приобретать разные формы и осуществляться различными средствами. Во всех случаях речь идет об упражнениях, то есть неоднократном повторении сходных действий. При выполнении ряда заданий присутствуют элементы творчество, но в целом деятельность учащихся является репродуктивной.

Проблемное изложение

Если учитель не излагает готовые научные истины (формулировки теорем, их доказательства и т.п.), а в какой-то мере воспроизводит путь открытия этих знаний, то такой метод называют проблемным изложением. При проблемном изложении материала учитель демонстриру­ет учащимся процесс движения индивидуального сознания в ре­шении проблемы, рассуждая вслух. При этом знания предъявляются не в законченном виде, а учитель ищет ответы на возникающие и подчеркиваемые вопро­сы на глазах у обучаемых, показывая образцы мыслительного поиска, раскрывая противоречия процесса мышления. По существу учитель раскрывает перед учащимися путь исследования, поиска и открытия новых знаний, готовя их тем самым к самостоятельному поиску в дальнейшем.

Принципы организации проблемного изложения и проблемной беседы (эвристический метод) одни и те же. Но при проблемном изложении основную проблему и подпроблемы ставит и решает учитель, а в проблем­ной беседе к выявлению основной проблемы и подпроблем и к их решению привлекаются учащиеся.

При орга­низации проблемного изложения и проблемной беседы полезно объяснение нового материала начинается с инте­ресной практической или исторической задачи, позволяющей со­здать исходную проблемную ситуацию, мотивирующую изучение нового. Использование таких задач стимулирует проявление по­знавательного интереса. Исходная проблемная ситуация вызы­вает необходимость построения математической модели реаль­ной ситуации. В результате разрешения исходной проблемной ситуации намечается цель действия.

Основная проблема, выдвинутая в ходе анализа исходной проблемной ситуации, разбивается на ряд подпроблем, каждая из которых порождает свою проблемную ситуацию. Про­блемное изложение, проблемная беседа могут содержать от двух и более проблемных ситуаций. Эти ситуации связаны с поиском решения основной проблемы, способа достижения выдвинутой цели, возможного применения полученного знания, распростра­нением полученной закономерности на частные случаи.