Смекни!
smekni.com

Курс физики (стр. 117 из 157)

Из формул (220.9) и (220.7) следует, что при больших квантовых числах

(n >> 1) ∆En/En ≈ 2/n << 1, т. е. соседние уровни расположены тесно: тем теснее, чем больше n. Если n очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность — сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

Более общая трактовка принципа соответствия, имеющего огромную роль в со временной физике, заключается в следующем: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных пре дельных случаях новая теория переходит в старую. Так, формулы кинематики и динамики специальной теории относительности переходят при v<<с в формулы механики Ньютона. Например, хотя гипотеза де Бройля приписывает волновые свойства всем телам, но в тех случаях, когда мы имеем дело с макроскопическими телами, их волновыми свойствами можно пренебречь, т. е. применять классическую механику Ньютона.

§ 221. ПРОХОЖДЕНИЕ ЧАСТИЦЫ СКВОЗЬ ПОТЕНЦИАЛЬНЫЙ БАРЬЕР.

ТУННЕЛЬНЫЙ ЭФФЕКТ

Рассмотрим простейший потенциальный барьер прямоугольной формы

(рис. 298, а) для одномерного (по оси х) движения частицы. Для потенциального барьера прямоугольной формы высоты U и ширины l можем записать

(для области 1),

(для области 2), (для области 3).

При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при Е > U), либо отразится от него (при Е < U) и будет двигаться в обратную сторону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы же, даже при E > U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E < U имеется также отличная от нуля вероятность, что частица окажется в области х >l, т. е. проникает сквозь барьер. Подобные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, описывающего движение микро частицы при условиях данной задачи.

Рис. 298

Уравнение Шредингера (217.5) для стационарных состояний для каждой из выделенных на рис. 298, а области имеет вид

(221.1)

Общие решения этих дифференциальных уравнений:

(для области 1); (221.2)

(для области 2);

(для области 3). (221.3)

В частности, для области 1 полная волновая функция, согласно (217.4), будет иметь вид

(221.4)

В этом выражении первый член представляет собой плоскую волну типа

(219.3), распространяющуюся в положительном направлении оси х (соответствует частице, движущейся в сторону барьера), а второй — волну, распространяющуюся в противоположном направлении, т. е. отраженную от барьера (соответствует частице, движущейся от барьера налево).

Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо.

Поэтому коэффициент В3 в формуле (221.3) следует принять равным нулю.

В области 2 решение зависит от соотношений Е > U или Е < U. Физический интерес представляет случай, когда полная энергия частицы меньше высоты потенциального барьера, поскольку при Е < U законы классической физики однозначно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (221.1), q = iβ — мнимое число, где

Учитывая значение q и B3=0, получим решения уравнения Шредингера для трех областей в следующем виде:

(221.5)

В области 2 функция (221.5) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Можно показать, что для частного случая высокого и широкого барьера, когда βl >>1, B2 ≈ 0 .

Качественный характер функций ψ1(x), ψ2(x), ψ3(x) иллюстрируется на рис. 298, б, откуда следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, получили, что частица имеет отличную от нуля вероятность прохождения сквозь потенциальный барьер конечной ширины.

Таким образом, квантовая механика приводит к принципиально новому специфическому квантовому явлению, получившему название туннельного эффекта, в результате которого микрообъект может «пройти» сквозь потенциальный барьер.

Для описания туннельного эффекта используют понятие коэффициента прозрачности D потенциального барьера, определяемого как отношение плотности потока прошедших частиц к плотности потока падающих. Можно показать, что

Для того чтобы найти отношение |A3/A1|2, необходимо воспользоваться условиями непрерывности ψ и ψ ' на границах барьера х = 0 и х = l (рис. 298):

(221.6)

Эти четыре условия дают возможность выразить коэффициенты A2, A3, B1 и B2 через A1. Совместное решение уравнений (221.6) для прямоугольного потенциального барьера дает (в предположении, что коэффициент прозрачности мал по сравнению с единицей)

(221.7)

где U — высота потенциального барьера, Е — энергия частицы, l — ширина барьера, D0 — постоянный множитель, который можно приравнять единице. Из выражения (221.7) следует, что D сильно зависит от массы m частицы, ширины l барьера и от (U - E); чем шире барьер, тем меньше вероятность прохождения сквозь него частицы. Для потенциального барьера произвольной формы (рис. 299), удовлетворяющей условиям так называемого квазиклассического приближения (достаточно гладкая форма кривой), имеем

Рис. 299

С классической точки зрения прохождение частицы сквозь потенциальный барьер при Е < U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы сквозь область, в которую, согласно законам классической механики, она не может проникнуть, можно пояснить соотношением неопределенностей. Неопределенность импульса ∆р на отрезке ∆x = l составляет ∆р > h/l. Связанная с. этим разбросом в значениях импульса кинетическая энергия (∆р)2/(2m) может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной.

Основы теории туннельных переходов заложены работами Л. И. Мандельштама и М. А. Леонтовича (1903—1981). Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например, явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например, α-распад, протекание термоядерных реакций).

§ 222. ЛИНЕЙНЫЙ ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР В КВАНТОВОЙ МЕХАНИКЕ

Линейный гармонический осциллятор — система, совершающая одномерное движение под действием квазиупругой силы, — является моделью, используемой во многих задачах классической и квантовой теории (см. § 142). Пружинный, физический и математический маятники — примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора (см. (141.5)) равна

(222.1)

где ω0 — собственная частота колебаний осциллятора, m— масса частицы. Зависимость (222.1) имеет вид параболы (рис. 300), т. е. «потенциальная яма» в данном случае является параболической.

Рис. 300

Амплитуда малых колебаний классического осциллятора определяется его полной энергией Е (см. рис. 16). В точках с координатами ±хmax полная энергия Е равна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области (-хmax, + хmax). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Таким образом, классический осциллятор находится в «потенциальной яме» с координатами — - хmax ≤ x ≤ хmax «без права выхода» из нее.