Смекни!
smekni.com

Курс физики (стр. 99 из 157)

§ 186. ЭЛЕКТРОННАЯ ТЕОРИЯ ДИСПЕРСИИ СВЕТА

Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где ε — диэлектрическая проницаемость среды, µ — магнитная проницаемость.

В оптической области спектра для всех веществ µ ≈ 1, поэтому

(186.1)

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной (см. § 185), остается в то же время равной определенной постоянной - √ε. Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости ε от частоты ω световых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна

где æ — диэлектрическая восприимчивость среды, ε0 — электрическая постоянная, Р — мгновенное значение поляризованности. Следовательно,

(186.2)

т. е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т. е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (v ≈ 1015 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны — оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е — заряд электрона, х — смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n0 то мгновенное значение поляризованности

Из (186.2) и

(186.3) получим

(186.3) (186.4) Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты со, т. е. изменяющимся по гармоническому закону: E = E0cosωt.

Уравнение вынужденных колебаний электрона (см. § 147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде

(186.5)

где F0 = eE0 — амплитудное значение силы, действующей на электрон со стороны поля волны, ω0 = k m — собственная частота колебаний электрона, m — масса электрона. Решив уравнение (186.5), найдем ε = n2 в зависимости от констант атома (е, m, ω0) и частоты ω внешнего поля, т. е. решим задачу дисперсии. Решение уравнения (186.5) можно записать в виде

где

(186.6) (186.7)

в чем легко убедиться подстановкой (см. (147.8)). Подставляя (186.6) и (186.7) в (186.4), получим

(186.8)

Если в веществе имеются различные заряды ehсовершающие вынужденные колебания с различными собственными частотами еа0|, то

(186.9)

где m1 — масса i-го заряда.

Из выражений (186.8) и (186.9) вытекает, что показатель преломления л зависит от частоты ω внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в дальнейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от ω = 0 до ω = ω0n2 больше единицы и возрастает с увеличением ω (нормальная дисперсия); при ω = ω0n2 = ± ∞; в области от ω = ω0 до ω = ∞n2 меньше единицы и возрастает от - ∞ до 1 (нормальная дисперсия). Перейдя от n2 к n, получим, что график зависимости n от ω имеет вид, изображенный на рис. 270.

Рис. 270

Такое поведение n вблизи ω0 — результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции л (со) вблизи too задается штриховой линией АВ. Область АВ — область аномальной дисперсии (n убывает при возрастании ω), остальные участки зависимости n от ω описывают нормальную дисперсию (n возрастает с возрастанием ω).

Российскому физику Д. С. Рождественскому (1876—1940) принадлежит классическая работа по изучению аномальной дисперсии в парах натрия. Он разработал интерференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (186.9) правильно характеризует зависимость n от ω, а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.

§ 187. ПОГЛОЩЕНИЕ (АБСОРБЦИЯ) СВЕТА

Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается законом Бугера[33]:

(187.1)

где I0 и I — интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, α — коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х= 1/α интенсивность света I по сравнению с I0 уменьшается в е раз.

Коэффициент поглощения зависит от длины волны λ (или частоты ω) и для различных веществ различен. Например, одноатомные газы и пары металлов (т. е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10-12 — 10-7 м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуется полосами поглощения (примерно 10~10—10~7 м).

Коэффициент поглощения для диэлектриков невелик (примерно 10-3 - 10-5 см-1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда а резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т. е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

Коэффициент поглощения для металлов имеет большие значения (примерно 103 —105 см-1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

На рис. 271 представлены типичная зависимость коэффициента поглощения α от длины волны света λ и зависимость показателя преломления n от λ в области полосы поглощения.

Рис. 271

Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с уменьшением λ). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.

Зависимостью коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.