Смекни!
smekni.com

Физика 10 класс Барьяхтар академ (стр. 9 из 10)

Матеріальне тіло в механіці описують його розмірами, формою та масою. Наприклад, планета Земля має форму кулі радіусом 6400 км, її маса становить приблизно 6 10⋅ 24 кг.

Виникає питання: чи завжди для опису руху тіла потрібно знати об’єм і форму цього тіла? Розглянемо поступальний рух якогось пробного тіла. У ході такого руху всі частини тіла рухаються однаково. Тому можна обрати одну, досить малу за розмірами частину пробного тіла й розглядати її як «представницю» всього тіла в його русі. Додамо до розташування цієї частини у просторі масу всього тіла й назвемо цю частину матеріальною точкою.

матеріальна точка — це фізична модель, що застосовується для

спрощення опису руху тіла й відповідає тілу, розмірами якого в умовах даної задачі можна знехтувати.

Сфера застосування моделі «матеріальна точка» обмежена. Так, розглядаючи рух потяга між залізничними станціями, потяг можна вважати матеріальною точкою. Але коли потяг зупиняється на станції, ця модель не працює, бо, наприклад, пасажири мають знати номери вагонів у потязі, тобто мусять брати до уваги його розміри. Якщо тіло здійснює обертальний рух і радіуси кіл, які описують усі точки тіла, набагато більші за розміри тіла, то цей рух теж можна описувати, вважаючи тіло матеріальною точкою. Наприклад, за допомогою моделі «матеріальна точка» можна описувати рух Землі навколо Сонця. При цьому описувати добове обертання Землі за допомогою цієї моделі, звичайно, не можна.

Далі, якщо не буде спеціальних застережень, вважатимемо, що дане тіло є матеріальною точкою.

2

Що таке траєкторія руху матеріальної точки

траєкторія — уявна лінія, в кожній точці якої послідовно перебувала

матеріальна точка під час руху в просторі.

Проведіть по класній дошці крейдою — слід, який вона залишить, і є траєкторією руху крейди. Іноді можна побачити траєкторію руху літака (рис. 6.1). Ланцюжок слідів на чистому снігу допоможе відновити траєкторію руху людини або тварини, а залізничні рейки покажуть траєкторію руху потяга. Однак найчастіше траєкторія залишається невидимою для спостерігача.

Форма траєкторії руху тіла може бути довільною: дуга, парабола, пряма, ламана, яка­небудь складна лінія тощо. Ділянки траєкторії за формою діляться на прямолінійні та криволінійні. У першому випадку траєкторія руху тіла в даній СВ — пряма лінія, у другому — крива. Наведемо кілька прикладів.

Траєкторією руху Землі в Сонячній сисРис. 6.1. Інколи траєкторія руху темі є її орбіта. Орбіта Землі плоска, практичтіла може бути видимою но не відрізняється від кола. Траєкторії руху штучних супутників Землі трохи складніші

й містять у собі дві ділянки: підняття супутника та орбіту його обертання. Остання теж плоска, але за формою являє собою еліпс.

Значно складніша траєкторія польоту на Місяць — вона складається з кількох частин. З поверхні Землі на навколоземну орбіту запускають космічний корабель. Частина космічного корабля (умовно — корабель А) залишається на навколоземній орбіті, а інша його частина (корабель Б) стартує до Місяця. Поблизу Місяця корабель Б затримується на навколомісячній орбіті. Від нього відокремлюється посадковий модуль, який і здійснює посадку на Місяць. Після виконання завдання посадковий модуль повертається на навколомісячну орбіту. Тут відбувається стикування модуля та корабля Б, після чого корабель Б стартує до Землі — на навколоземну орбіту. На навколоземній орбіті відбувається стикування кораблів А і Б та здійснюється підготування до посадки на Землю. Завдяки всій цій процедурі досягають істотної економії палива. Траєкторію такого польоту на Місяць запропонував і обґрунтував український інженер Юрій Васильович Кондратюк (1897–1941), і на його честь її названо трасою Кондратюка.

Зверніть увагу: траєкторія руху тіла залежить від того, відносно якого тіла відліку спостерігають за рухом (рис. 6.2). Тому для опису руху тіла дуже важливо вибрати таку СВ, у якій траєкторія руху цього тіла якнайпростіша. Для наочності наведемо при­

Рис. 6.2. Траєкторія точки P на ободі колеса автомобіля під час руху: відносно автомобіля це коло (червона лінія),

відносно земної поверхні —

P циклоїда (синя лінія)

§ 6. Матеріальна точка. Траєкторія руху. Шлях. Переміщення


клад з історії. Давньогрецький учений Клавдій Птолемей, розглядаючи рух усіх небесних тіл і припускаючи, що в центрі Всесвіту розташована Земля (Гея), запропонував геоцентричну СВ, тобто СВ, пов’язану із Землею (рис. 6.3). Траєкторії руху планет у цій системі були настільки складними, що мало хто навіть із дуже освічених людей того часу міг їх уявити, а тим більше описати. Кілька століть по тому польський учений Миколай Коперник запропонував геліоцентричну СВ, узявши за тіло відліку Сонце (Геліос) (рис. 6.4). І картина будови Сонячної системи стала простою й доступною для розуміння.
3

чим шлях відрізняється від переміщення

З поняттям траєкторії руху тісно пов’я зане поняття шляху.

Шлях l — це фізична величина, що чисель

но дорівнює довжині ділянки траєкторії, яка пройдена тілом за даний проміжок часу.

Одиниця шляху в СІметр (м).

Шлях, пройдений тілом, дозволяє визначити положення тіла в певний момент часу тільки тоді, коли відома траєкторія руху тіла. У цьому випадку досить від початкового положення тіла вздовж траєкторії в напрямку руху відкласти пройдений шлях.

Однак що робити, якщо траєкторія руху невідома? Наприклад, вийшовши зі школи, учень пройшов за півгодини шлях, який дорівнює 2 км. У цьому випадку неможливо вказати, у якому місці учень перебуватиме через півгодини, адже він може обрати будьякий напрямок руху і будь­яку траєкторію. Інша річ, якщо відомо, що через півгодини учень опиниться на відстані 2 км на південь від школи. Тут йдеться вже про зовсім іншу фізичну величину, яка називається переміщення.

Сонце

Сатурн Юпітер

Місяць

Земля Венера

Меркурій

Марс

Рис. 6.3. Геоцентрична система світобудови за Птолемеєм. Для пояснення руху планет Птолемей придумав «систему епіциклів». Планета «прикріплена» до невеликої «кришталевої» сфери, а та, у свою чергу, «прикріплена» до великої сфери, у центрі якої розташована Земля. Обидві сфери обертаються, причому кожна має свій період обертання. Спільне обертання сфер, за Птолемеєм, і пояснює незвичайні траєкторії планет

переміщення sr — це вектор, напрямлений із точки, де перебувало
тіло в момент початку відліку часу, у точку, де перебувало тіло в розглядуваний момент часу.

Рис. 6.4. Геліоцентрична система світобудови за Коперником. Згідно з Коперником, у центрі Всесвіту розташоване Сонце, а кожна планета обертається навколо Сонця по своїй коловій орбіті

Рис. 6.5. Переміщення sr (позначено синім кольором) показує, на яку відстань від початкового положення і в якому напрямку перемістилося тіло за даний проміжок часу. Точка A — початкове положення тіла, точка B — положення тіла через заданий проміжок часу; l — шлях, пройдений тілом