-------------kogda p<0-------------50sloy | |||
N priblijennoe tochnoe pogreshnosti | |||
0 | 0.03678794 | 0.03678794 | 0.00000000 |
1 | 0.03444494 | 0.03558189 | 0.00113696 |
2 | 0.03220334 | 0.03441538 | 0.00221204 |
3 | 0.03005929 | 0.03328711 | 0.00322782 |
4 | 0.02800907 | 0.03219583 | 0.00418676 |
5 | 0.02604910 | 0.03114032 | 0.00509122 |
6 | 0.02417592 | 0.03011942 | 0.00594350 |
7 | 0.02238620 | 0.02913199 | 0.00674579 |
8 | 0.02067672 | 0.02817693 | 0.00750021 |
9 | 0.01904439 | 0.02725318 | 0.00820879 |
10 | 0.01748622 | 0.02635971 | 0.00887349 |
11 | 0.01599934 | 0.02549554 | 0.00949620 |
12 | 0.01458096 | 0.02465970 | 0.01007874 |
13 | 0.01322842 | 0.02385126 | 0.01062284 |
14 | 0.01193914 | 0.02306932 | 0.01113018 |
15 | 0.01071063 | 0.02231302 | 0.01160239 |
Текст программы смотри в приложении 4
3.3 Неявные схемы
Рассмотрим две различные разностные схемы:
1. Центрально-разностная схема.
2. Трехточечная схема с весом.
Все эти схемы сводятся к стандартному виду (3.4) и решаются методом прогонки
(3.4)Коэффициенты Ai, Bi, Ci должны удовлетворять условиям:
(3.5)Коэффициенты B0 , C0 , F0, AN ,CN ,FN находятся из граничных условий. В данной задаче в зависимости от знака функции p(x,t) ставятся граничные условия и тем самым находятся наши коэффициенты.
1) Когда р>0 задается правое граничное условие:
Используя уравнения (3.3′) находим коэффициенты AN ,CN ,FN . Коэффициенты B0 , C0 , F0 находятся из дополнительного условия, которое ставится на левом конце.
2) Когда р<0 задается граничное условие на левом конце
(3.3″)Используя уравнения (3.3″) находим коэффициенты B0 , C0 , F0
Коэффициенты AN ,CN ,FN находятся из дополнительного условия, которое ставится на правом конце.
3.3.1 Центрально-разностная схема
Разностная схема задачи (3.1)-(3.3) имеет следующий вид:
1) р>0. В этом случае граничное условие задается на правом конце:
(3.6)Используя уравнение (3.6) находим коэффициенты AN =0, CN=1,
Дополнительное условие на левом конце имеет вид:
(3.7)Приведем уравнение (3.7) к виду :
(3.7′)Отсюда находим коэффициенты:
2) В случае, когда р<0, граничное условие ставится на левом конце
(3.8)Используя уравнение (3.8) находим коэффициенты B0,=0, C0=1,
Дополнительное условие на правом конце имеет вид:
Приводим уравнение (3.9) к виду :
(3.9′)отсюда находим коэффициенты:
Таблица 13. Численное решение уравнения переноса с постоянными коэффициентами центральная разностная схема метод прогонки
-------------kogda p>0--------------50sloy | |||
N priblijennoe tochnoe pogreshnosti | |||
0 | 0.03544452 | 0.03678794 | 0.00134342 |
1 | 0.03541069 | 0.03558189 | 0.00017120 |
2 | 0.03306824 | 0.03441538 | 0.00134714 |
3 | 0.03313883 | 0.03328711 | 0.00014828 |
4 | 0.03084494 | 0.03219583 | 0.00135089 |
5 | 0.03101552 | 0.03114032 | 0.00012480 |
6 | 0.02876471 | 0.03011942 | 0.00135472 |
7 | 0.02903119 | 0.02913199 | 0.00010080 |
8 | 0.02681828 | 0.02817693 | 0.00135865 |
9 | 0.02717688 | 0.02725318 | 0.00007630 |
10 | 0.02499699 | 0.02635971 | 0.00136272 |
11 | 0.02544422 | 0.02549554 | 0.00005132 |
12 | 0.02329272 | 0.02465970 | 0.00136698 |
13 | 0.02382538 | 0.02385126 | 0.00002588 |
14 | 0.02169787 | 0.02306932 | 0.00137145 |
15 | 0.02231302 | 0.02231302 | 0.00000000 |
Таблица 14. Численное решение уравнения переноса с постоянными коэффициентами центральная разностная схема метод прогонки
-------------kogda p<0--------------50sloy | |||
N priblijennoe tochnoe pogreshnosti | |||
0 | 0.03678794 | 0.03678794 | 0.00000000 |
1 | 0.03475182 | 0.03558189 | 0.00083008 |
2 | 0.03440516 | 0.03441538 | 0.00001021 |
3 | 0.03246493 | 0.03328711 | 0.00082218 |
4 | 0.03217504 | 0.03219583 | 0.00002079 |
5 | 0.03032529 | 0.03114032 | 0.00081503 |
6 | 0.03008771 | 0.03011942 | 0.00003171 |
7 | 0.02832337 | 0.02913199 | 0.00080861 |
8 | 0.02813396 | 0.02817693 | 0.00004297 |
9 | 0.02645027 | 0.02725318 | 0.00080290 |
10 | 0.02630518 | 0.02635971 | 0.00005453 |
11 | 0.02469766 | 0.02549554 | 0.00079788 |
12 | 0.02459330 | 0.02465970 | 0.00006639 |
13 | 0.02305773 | 0.02385126 | 0.00079352 |
14 | 0.02299077 | 0.02306932 | 0.00007855 |
15 | 0.02152320 | 0.02231302 | 0.00078982 |
Текст программы смотри в приложении 5
3.3.2 Трехточечная схема с весом
Разностная схема имеет вид:
вещественный параметр1. p>0
На левом конце ставится дополнительное условие
2. p<0
На правом конце ставится дополнительное условие
Разностные уравнения и дополнительные условия сводятся к стандартному виду (3.4) и решаются методом прогонки.
Таблица 15. Численное решение уравнения переноса с постоянными коэффициентами Трехточечная схема с весом Метод прогонки
50sloy N priblijennoe tochnoe pogreshnosti | |||
-------------------kogda p>0---------------kogda G=1 | |||
0 | 0.03684277 | 0.03678794 | 0.00005483 |
1 | 0.03562797 | 0.03558189 | 0.00004607 |
2 | 0.03446165 | 0.03441538 | 0.00004627 |
3 | 0.03332487 | 0.03328711 | 0.00003776 |
4 | 0.03223422 | 0.03219583 | 0.00003839 |
5 | 0.03117042 | 0.03114032 | 0.00003010 |
6 | 0.03015056 | 0.03011942 | 0.00003113 |
7 | 0.02915502 | 0.02913199 | 0.00002303 |
8 | 0.02820139 | 0.02817693 | 0.00002446 |
9 | 0.02726970 | 0.02725318 | 0.00001653 |
10 | 0.02637804 | 0.02635971 | 0.00001833 |
11 | 0.02550608 | 0.02549554 | 0.00001054 |
12 | 0.02467240 | 0.02465970 | 0.00001270 |
13 | 0.02385630 | 0.02385126 | 0.00000505 |
14 | 0.02307687 | 0.02306932 | 0.00000755 |
15 | 0.02231302 | 0.02231302 | 0.00000000 |
Таблица 16. Численное решение уравнения переноса с постоянными коэффициентами Трехточечная схема с весом Метод прогонки
-------------------kogda p>0---------------kogda G=0.5 | |||
50sloy N priblijennoe tochnoe pogreshnosti | |||
0 | 0.02231797 | 0.03678794 | 0.01446998 |
1 | 0.03255024 | 0.03558189 | 0.00303165 |
2 | 0.02198079 | 0.03441538 | 0.01243459 |
3 | 0.03239095 | 0.03328711 | 0.00089616 |
4 | 0.01731825 | 0.03219583 | 0.01487758 |
5 | 0.03017261 | 0.03114032 | 0.00096771 |
6 | 0.01587847 | 0.03011942 | 0.01424095 |
7 | 0.02811880 | 0.02913199 | 0.00101319 |
8 | 0.01659506 | 0.02817693 | 0.01158187 |
9 | 0.02595836 | 0.02725318 | 0.00129482 |
10 | 0.01001244 | 0.02635971 | 0.01634727 |
11 | 0.02310867 | 0.02549554 | 0.00238687 |
12 | 0.01064808 | 0.02465970 | 0.01401161 |
13 | 0.02440333 | 0.02385126 | 0.00055207 |
14 | 0.01016357 | 0.02306932 | 0.01290574 |
15 | 0.02231302 | 0.02231302 | 0.00000000 |
Таблица 17. Численное решение уравнения переноса с постоянными коэффициентами Трехточечная схема с весом Метод прогонки