Конечно, такие предположения не предсказывают строго, когда генетический алгоритм будет эффективной процедурой поиска, конкурирующей с другими процедурами. Эффективность генетического алгоритма сильно зависит от таких деталей, как метод кодировки решений, операторы, настройки параметров, частный критерий успеха. Теоретическая работа, отраженная в литературе, посвященной генетическим алгоритмам, не дает оснований говорить о выработки каких-либо строгих механизмов для четких предсказаний.
Цель в оптимизации с помощью генетического алгоритма состоит в том, чтобы найти лучшее возможное решение или решения задачи по одному или нескольким критериям. Чтобы реализовать генетический алгоритм нужно сначала выбрать подходящую структуру для представления этих решений. В постановке задачи поиска, экземпляр этой структуры данных представляет точку в пространстве поиска всех возможных решений.
Структура данных генетического алгоритма состоит из одной или большее количество хромосом (обычно из одной). Как правило, хромосома - это битовая строка, так что термин строка часто заменяет понятие "хромосома". В принципе, генетические алгоритмы не ограничены бинарным представлением. Известны другие реализации, построенные исключительно на векторах вещественных чисел . Несмотря на то, что для многих реальных задач, видимо, больше подходят строки переменной длины, в настоящее время структуры фиксированной длины наиболее распространены и изучены. Пока и мы ограничимся только структурам, которые являются одиночными строками по l бит.
Каждая хромосома (строка) представляет собой конкатенацию ряда подкомпонентов называемых генами. Гены располагаются в различных позициях или локусах хромосомы, и принимают значения, называемые аллелями. В представлениях с бинарными строками, ген - бит, локус - его позиция в строке, и аллель - его значение (0 или 1). Биологический термин "генотип" относится к полной генетической модели особи и соответствует структуре в генетическом алгоритме. Термин "фенотип" относится к внешним наблюдаемым признакам и соответствует вектору в пространстве параметров. Чрезвычайно простой, но иллюстративный пример - задача максимизации следующей функции двух переменных: (1)
f (x1, x2) = exp(x1x2), где 0 < x1< 1 и 0 < x2 < 1. (1)
Обычно, методика кодирования реальных переменных x1 и x2 состоит в их преобразовании в двоичные целочисленные строки достаточной длины - достаточной для того, чтобы обеспечить желаемую точность. Предположим, что 10-разрядное кодирование достаточно и для x1, и x2. Установить соответствие между генотипом и фенотипом закодированных особей можно, разделив соответствующее двоичное целое число - на 210-1. Например, 0000000000 соответствует 0/1023 или 0, тогда как 1111111111 соответствует 1023/1023 или 1. Оптимизируемая структура данных - 20-битная строка, представляющая конкатенацию кодировок x1 и x2. Переменная x1 размещается в крайних левых 10-разрядах, тогда как x2 размещается в правой части генотипа особи (20-битовой строке). Генотип - точка в 20-мерном хеммининговом пространстве, исследуемом генетическим алгоритмом. Фенотип - точка в двумерном пространстве параметров.
Чтобы оптимизировать структуру, используя генетический алгоритм, нужно задать некоторую меру качества для каждой структуры в пространстве поиска. Для этой цели используется функция приспособленности. В функциональной максимизации, целевая функция часто сама выступает в качестве функции приспособленности (например наш двумерный пример); для задач минимизации, целевую функцию следует инвертировать и сместить затем в область положительных значений.
Простой генетический алгоритм случайным образом генерирует начальную популяцию структур. Работа генетического алгоритма представляет собой итерационный процесс, который продолжается до тех пор, пока не выполнятся заданное число поколений или какой-либо иной критерий остановки. На каждом поколении генетического алгоритма реализуется отбор пропорционально приспособленности, одноточечный кроссовер и мутация. Сначала, пропорциональный отбор назначает каждой структуре вероятность Ps(i) равную отношению ее приспособленности к суммарной приспособленности популяции.
Затем происходит отбор (с замещением) всех n особей для дальнейшей генетической обработки, согласно величине Ps(i). Простейший пропорциональный отбор - рулетка - отбирает особей с помощью n "запусков" рулетки. Колесо рулетки содержит по одному сектору для каждого члена популяции. Размер i-ого сектора пропорционален соответствующей величине Ps(i). При таком отборе члены популяции с более высокой приспособленностью с большей вероятность будут чаще выбираться, чем особи с низкой приспособленностью.
После отбора, n выбранных особей подвергаются кроссоверу (иногда называемому рекомбинацией) с заданной вероятностью Pc. n строк случайным образом разбиваются на n/2 пары. Для каждой пары с вероятность Pc может применяться кроссовер. Соответственно с вероятностью 1-Pc кроссовер не происходит и неизмененные особи переходят на стадию мутации. Если кроссовер происходит, полученные потомки заменяют собой родителей и переходят к мутации.
Одноточечный кроссовер работает следующим образом. Сначала, случайным образом выбирается одна из l-1 точек разрыва. (Точка разрыва - участок между соседними битами в строке.) Обе родительские структуры разрываются на два сегмента по этой точке. Затем, соответствующие сегменты различных родителей склеиваются и получаются два генотипа потомков.
Например, предположим, один родитель состоит из 10 нолей, а другой - из 10 единиц. Пусть из 9 возможных точек разрыва выбрана точка 3. Родители и их потомки показаны ниже в табл.1:
Кроссовер
Родитель 0000000000 000~0000000 - 111~0000000 1110000000 Потомок
1 1
>
Родитель 1111111111 111~1111111 - 000~1111111 0001111111 Потомок
2 - 2
-
>
Схема 2
После того, как закончится стадия кроссовера, выполняются операторы мутации. В каждой строке, которая подвергается мутации, каждый бит с вероятностью Pm изменяется на противоположный. Популяция, полученная после мутации записывает поверх старой и этим цикл одного поколения завершается. Последующие поколения обрабатываются таким же образом: отбор, кроссовер и мутация.
В настоящее время исследователи генетических алгоритмов предлагают много других операторов отбора, кроссовера и мутации. Вот лишь наиболее распространенные из них. Прежде всего, турнирный. Турнирный отбор реализует n турниров, чтобы выбрать n особей. Каждый турнир построен на выборке k элементов из популяции, и выбора лучшей особи среди них. Наиболее распространен турнирный отбор с k=2.
Элитные методы отбора гарантируют, что при отборе обязательно будут выживать лучший или лучшие члены популяции совокупности. Наиболее распространена процедура обязательного сохранения только одной лучшей особи, если она не прошла как другие через процесс отбора, кроссовера и мутации. Элитизм может быть внедрен практически в любой стандартный метод отбора.
Двухточечный кроссовер и равномерный кроссовер - вполне достойные альтернативы одноточечному оператору. В двухточечном кроссовере выбираются две точки разрыва, и родительские хромосомы обмениваются сегментом, который находится между двумя этими точками. В равномерном кроссовере, каждый бит первого родителя наследуется первым потомком с заданной вероятностью; в противном случае этот бит передается второму потомку. И наоборот.
Хотя внешне кажется, что генетический алгоритм обрабатывает строки, на самом деле при этом неявно происходит обработка шим, которые представляют шаблоны подобия между строками. Генетический алгоритм практически не может заниматься полным перебором всех точек в пространстве поиска. Однако он может производить выборку значительного числа гиперплоскостей в областях поиска с высокой приспособленностью. Каждая такая гиперплоскость соответствует множеству похожих строк с высокой приспособленностью.
Шима - это строка длины l (что и длина любой строки популяции), состоящая из знаков алфавита {0; 1; *}, где {*} - неопределенный символ. Каждая шима определяет множество всех бинарных строк длины l, имеющих в соответствующих позициях либо 0, либо 1, в зависимости от того, какой бит находится в соответствующей позиции самой шимы.. Например, шима, 10**1, определяет собой множество из четырех пятибитовых строк {10001; 10011; 10101; 10111}. У шим выделяют два свойства - порядок и определенная длина. Порядок шимы - это число определенных битов ("0" или "1") в шиме. Определенная длина - расстояние между крайними определенными битами в шиме. Например, вышеупомянутая шима имеет порядок o(10**1) = 3, а определенная длина d(10**1) = 4. Каждая строка в популяции является примером шим.
Строящие блоки
Строящие блоки - это шимы обладающие:
- высокой приспособленностью,
- низким порядком,
- короткой определенной длиной.
Приспособленность шимы определяется как среднее приспособленностей примеров, которые ее содержат.
После процедуры отбора остаются только строки с более высокой приспособленностью. Следовательно строки, которые являются примерами шим с высокой приспособленностью, выбираются чаще. Кроссовер реже разрушает шимы с более короткой определенной длиной, а мутация реже разрушает шимы с низким порядком. Поэтому, такие шимы имеют больше шансов переходить из поколения в поколение. Голланд показал, что, в то время как генетический алгоритм явным образом обрабатывает n строк на каждом поколении, в тоже время неявно обрабатываются порядка таких коротких шим низкого порядка и с высокой приспособленностью (полезных шим, "useful schemata"). Он называл это явление неявным параллелизмом. Для решения реальных задач, присутствие неявного параллелизма означает, что большая популяция имеет больше возможностей локализовать решение экспоненциально быстрее популяции с меньшим числом особей.