Таблица 5 - Динамика и структура товарной продукции в СПК "Краснодарский"
Показатели | 1999 год | 2000 год | 2001 год | 2001 г. в % к 1999 г. | |||
тыс. руб. | в % к итогу | тыс. руб. | в % к итогу | тыс. руб. | в % к итогу | ||
Зерно | 1852 | 16,83 | 2244 | 11,23 | 3358 | 18,77 | 181,32 |
Овощи открытого грунта | 5819 | 52,88 | 7368 | 36,88 | 4805 | 26,86 | 82,57 |
Плоды | 2029 | 18,44 | 3852 | 19,28 | 2496 | 13,95 | 123,02 |
Прочие (ягоды) | 1305 | 11,85 | 6516 | 32,61 | 7228 | 40,42 | 553,87 |
Итого по растениеводству | 11005 | 100,0 | 19980 | 100,0 | 17887 | 100,0 | 162,54 |
Общественные явления, изучаемые статистикой, постоянно изменяются и развиваются. Например, в хозяйствах из года в год изменяется объем валовой продукции растениеводства и животноводства, поголовье скота, уровень производительности труда и т.д. При изучении этих процессов статистика применяет ряды динамики.
Рядами динамикиназываются ряды чисел, характеризующих изменение явлений во времени. Каждый ряд динамики состоит из двух элементов:
1) уровней, характеризующих величину изучаемого признака;
2) периодов (моментов), к которым относятся эти уровни.
В зависимости от характера уровней ряда различают два вида динамических рядов : моментные и интервальные (периодические).
Моментным называется ряд динамики, уровни которого характеризуют состояние явления на определенные моменты времени. Важное экономическое значение имеет определение разности уровней моментного ряда динамики, которая характеризует развитие (увеличение или уменьшение) изучаемого явления во времени.
Интервальным (периодическим) называется такой динамический ряд, уровни которого характеризуют размер явления за тот или иной период времени. Уровни интервального ряда в отличие от уровней моментного ряда не содержатся в предыдущих или последующих показателях. Поэтому важное экономическое значение имеет суммирование этих уровней. Сумма уровней периодического ряда динамики характеризует уровень данного явления за более длительный отрезок времени.
Часто ряды динамики приводят в виде абсолютных величин. Путем их обработки получают ряды динамики относительных и средних величин.
Рядом динамики относительных величин называется такой ряд, уровни которого характеризуют изменение относительных размеров изучаемых явлений во времени. Рядом динамики средних величин называется такой ряд, уровни которого характеризуют изменение средних размеров изучаемых явлений во времени.
Для анализа динамики общественных явлений исчисляют следующие показатели: 1) абсолютный прирост; 2) темп роста; 3) темп прироста; 4) значение одного процента прироста.
Абсолютный прирост (А) показывает, на сколько данный уровень больше или меньше базисного. Абсолютный прирост исчисляется как разница между сравниваемым и базисным уровнем :
А = Уn - Уо, где (9)
А – абсолютный прирост;
Уn – уровень, который сравнивается;
Уо – уровень, с которым производится сравнение.
Темп роста показывает, во сколько раз (процентов) сравниваемый уровень больше или меньше базисного, и рассчитывается как отношение сравниваемого уровня и уровня, принятого за базу сравнения :
Тр = Уn / Уо . (10)
Темп прироста показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения, и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения.
Тпр = А / Уо . (11)
Значение одного процента прироста исчисляется как отношение абсолютного прироста к темпу прироста. Значение этого показателя можно вычислить также путем деления первоначального уровня на 100.
Значение 1% прироста = Уо / 100 . (12)
В зависимости от уровня, принятого за базу сравнения, показатели ряда динамики делятся на цепные и базисные. Базисныминазываются показатели, которые исчисляются по отношению к одному и тому же уровню, принятому за постоянную базу сравнения. Цепными называются показатели, которые исчисляются по отношению к предыдущему уровню. Для общей характеристики развития явления за весь период, охватываемый рядом динамики, исчисляют средний уровень ряда. Средние, исчисленные из абсолютных уровней динамики, называются средними хронологическими. Различают средние хронологические для интервальных и моментных рядов динамики.
Средняя хронологическая для интервального ряда рассчитывается по формуле средней арифметической простой, т.е. путем деления суммы всех уровней ряда на их число по формуле
`у = Sу / n , где (13)у – средний уровень;
у – уровни ряда;
n – число уровней.
Для моментного ряда динамики выглядит следующим образом :
ухронол = (у1/2 +у2+¼+уn-1+yn/2)/(n-1), где (14)
n –число уровней.
Средние темпы роста исчисляют для обобщения характеристики темпов роста изучаемого явления за ряд лет. Расчет среднего темпа роста производится по формуле средней геометрической :
`угеом = nÖу1·у2¼уn, где (15)угеом - средний темп роста;
у1 ¼уn – цепные индивидуальные темпы роста;
n –число цепных темпов роста.
Для исчисления среднего темпа роста пользуются также формулой
______
у геом = n-1√ yn / y1 , где (16)
уn - конечный уровень динамического ряда;
у1 – начальный уровень динамического ряда.
Средние темпы прироста представляют собой разность между средним темпом роста и единицей (`у – 1) или 100, когда темп роста выражен в процентах.
`у пр = `у геом – 100 . (17)
Динамика конкретных показателей деятельности СПК «Краснодарский» более подробно рассмотрена в таблице 6.
Таблица 6 - Динамика прибыли от реализации продукции растениеводства в расчете на 1 га сельскохозяйственных угодий
Показатели | Обозна-чение | 1997г. | 1998г. | 1999г. | 2000г. | 2001г. | Сред-нее значе-ние |
Приходится прибыли на 1 га с/х угодий, руб. | У | 1676,8 | 1734,22 | 411,2 | 2072,08 | 1386,64 | 1456,19 |
Абсолютный прирост | Аб | - | 57,42 | -1265,6 | 395,28 | -290,16 | -72,54 |
Ац | - | 57,42 | -1323,02 | 1660,88 | -685,44 | ||
Темп роста, % | Трб | 100 | 103,42 | 24,52 | 123,57 | 82,69 | 95,36 |
Трц | 100 | 103,42 | 23,71 | 503,91 | 66,92 | ||
Темп прироста, % | Тпрб | - | 3,42 | -75,78 | 23,57 | -17,31 | -4,64 |
Тпрц | - | 3,42 | -76,29 | 403,91 | -33,08 | ||
Значение 1% прироста, руб. | Зн. 1% пр. | - | 16,77 | 17,34 | 4,11 | 20,72 | 15,63 |
Анализ данных таблицы 6 показал, что среднее значение прибыли от реализации продукции растениеводства в расчете на 1 га сельскохозяйственных угодий составило 1456,19 руб. В среднем ежегодно наблюдается уменьшение прибыли на 72,54 руб. или 4,64%.
Ряды динамики не всегда сравнимы, что затрудняет их анализ. Чтобы обеспечить сравнимость рядов динамики, используется такой прием анализа, как аналитическое выравнивание. Аналитическое выравнивание представляет собой наиболее точный способ выявления общей закономерности развития явлений. При этом способе средняя линия развития, характеризующая общую закономерность, определяется путем построения соответствующих аналитических уравнений: прямой, параболы, гиперболы и т.д.
Прямая линия выражается при помощи следующего уравнения:
`уt = а + bt, где (18)
уt – выровненные значения ряда;
t – время, т.е. порядковые номера периодов или моментов времени;
а и b – параметры искомой прямой , т.е. начальный уровень и ежегодный прирост (b – коэффициент регрессии, который показывает, насколько единиц изменится результативный признак при изменении факторного на 1 единицу).
Для того, чтобы найти неизвестные параметры уравнения (а и b), необходимо по способу наименьших квадратов решить систему нормальных уравнений:
åy = na + båt ;åyt = aåt + båt2 , где (19)
у – фактические уровни ряда динамики;
n – число лет.
Для упрощения расчетов в рядах динамики величинам t придают значения, которые при суммировании равны нулю, т.е. åt = 0. В этом случае система нормальных уравнений примет вид: