Смекни!
smekni.com

Аналіз та розробка LED-драйвера (стр. 6 из 6)

Відповідно до обраного дизайну програма видасть схему електричну принципову перетворювача з параметрами елементів (Рисунок 11).


Рисунок 11 - Схема електрична принципова першого перетворювача

Натисканням на позначку викрутки на схемі можна внести деякі зміни у схему(наприклад, замість RC кола, що демпфірує викиди напруги на виводі DRAIN мікросхеми використати коло з обмежувачем напруги – TVS діодом).

Крім схеми програма в графічній формі представляє форму струму та напругу на виводі DRAIN мікросхеми (Рисунок 12).

Рисунок 12 - Форма напруги та струму на виводі DRAIN


На верхній діаграмі показані діаграми при мінімальній вхідній напрузі а на нижній – при максимальній. Як видно, при мінімальній вхідній напрузі час відкритого стану силового ключа мікросхеми збільшується при одночасному збільшенні величини струму. На діаграмах також показаний рівень у обмеження струму силового ключа у 0,2 А.

Розраховані за допомогою програми втрати потужності на елементах схеми показані на рисунку 13.

Рисунок 13 - Розподіл втрат в компонентах схеми перетворювача

Як показує діаграма потужність, що споживається навантаженням складає 4,8 Вт, при чому драйвер споживає від мережі 6,01 Вт. Таким чином ККД перетворювача складає 79,86%. Найбільші втрати потужності забезпечують:

– Силовий транзистор мікросхеми при перемиканні – 357 мВт;

– Імпульсний трансформатор – 266 мВт;

– Вихідний діод та вихідний конденсатор – 222 мВт;

– Коло демпфірування – 272 мВт.

Слід зазначити, що ККД схеми перетворювача залежить від рівня вхідної напруги та потужності, що споживається навантаженням. Залежність показана на рисунку 14.


Рисунок 4 - Залежність ККД перетворювача від потужності споживання

Загальні втрати драйвера світлодіодів складаються з втрат в схемі перетворювача та втрат в колі стабілізатора струму на мікросхемі STCS05. Останні розраховуються за формулою:

, (1)

де Vdrain = (12 – 3*3,6) = 1,2 В – падіння напруги на силовому транзисторі, Vfb = 100 мВ - напруга на резисторі датчика струму, Iled = 350 мА – робочий струм світлодіодів, Vcc = 12 В – напруга живлення мікросхеми, Icc = 500 мкА – струм споживання мікросхеми.

Таким чином Pd = (1,2 – 0,1)*0,35 + 12*0,0005 = 391 мВт, тобто загальні втрати у схемі драйвера будуть близько 1,5 Вт, а ККД біля 70%, що є цілком прийнятною величиною.

2.3 Схема принципова драйвера білих світлодіодів

Принципова схема драйвера білих світлодіодів показана у додатку Б.

Напруга мережі 220 В поступає на схему через рознімання Х1, випрямляється діодним містком VD1 та фільтрується конденсатором С1. Далі випрямлена напруга подається на зворотноходовий перетворювач. Контролером перетворювача є мікросхема DA1 VIPer17, до стоку внутрішного силового транзисторного ключа якої підключена первинна обмотка імпульсного трансформатора Т1. Первинна обмотка зашунтована демпфіруючим колом на діодах VD3, VD4. З допоміжної обмотки трансформатора випрямлена діодом VD2 напруга використовується для живлення мікросхеми DA1 в сталому режимі роботи. З цієї ж обмотки випрямлена діодом VD3 напруга використовується для задання рівня обмеження максимального струму силового ключа. Вона дається на вхід CONT DA1 з дільника R2, R3.

З вихідної обмотки трансформатора напруга випрямляється діодом VD6 та фільтрується конденсатором C5. Ця напруга живіть джерело стабілізованого струму, яке побудоване на мікросхемі DA3 STCS05. Струм світлодіодів VD8-VD10 задається резистором R9.

Випрямлена напруга з вторинної обмотки також використовується у колі зворотного зв’язку для стабілізації напруги зворотноходового перетворювача. Коло зворотного зв’язку побудоване на елементах DA2, DA3. Зміна напруги на конденсаторі C5 внаслідок дестабілізуючих факторів за допомогою мікросхеми DA3 перетворюється у зміну струму світлодіода оптопари DA2, який, в свою чергу, передає ці зміни через управління фототранзистором оптопари на вхід FB мікросхеми DA1.

Управління яскравістю світлодіодів здійснюється шляхом подачи широтно-модульованого сигнала рівня TTL на контакти рознімання Х2.


Висновки

В загальній частині дипломної роботи накреслені перспективи використання світлодіодів в освітленні. Відзначено, що використання світлодіодів найближчим часом буде йти випереджальними темпами. Однією з причин широкого застосування світлодіодів в освітленні є їх значна перевага з точки зору енергозбереження. Для живлення світлодіодів потрібні спеціальні контролери, огляд популярних контролерів живлення світлодіодів наведено в загальній частині.

В спеціальній частині роботи наведено аналіз мікросхем драйверів світлодіодів фірми STMicroelectronics, розглянуті їх основні режими роботи.

За допомогою програми SMPS@eDisign Studio виконані розрахунки параметрів елементів схеми драйвера білих світлодіодів із живленням від мережі 220 В. За допомогою програми та розрахунків визначений ККД драйвера. Розроблена схема драйвера, надано опис її роботи.


Додаток А – Функціональна схема контролера VIPer17. Плакат


Додаток Б – Драйвер білих світлодіодів. Схема електрична принципова. Плакат