Смекни!
smekni.com

Аналіз та розробка LED-драйвера (стр. 1 из 6)

Зміст

Вступ

1 Загальна частина

1.1 Зростання ролі світлодіодного освітлення

1.2 Огляд драйверів живлення світлодіодних світильників

2 Спеціальна частина

2.1 Характеристика елементної бази

2.1.1 Опис роботи мікроконтролера на мікросхемі VIPer17 по схемі функціональній

2.1.2 Мікросхема STCS05

2.2 Розрахунок параметрів елементів схеми драйвера

2.3 Схема принципова драйвера білих світлодіодів

Висновки

Список літератури

Додаток А – Функціональна схема контролера VIPer17. Плакат

Додаток Б – Драйвер білих світлодіодів. Схема електрична принципова. Плакат


Вступ

З моменту своєї появи, світлодіоди проробили довгий шлях технологічного розвитку. В останні роки були розроблені яскраві світлодіоди в широкому діапазоні кольорів, який тепер включає й білий. Це у свою чергу, відкрило масу нових застосувань для світлодіодів у якості джерела світла зі своєю власною нішею ринку, відомою як «світлодіоди високої яскравості» (HB LEDs). Для визначення таких світлодіодів також використовують терміни «суперяскраві світлодіоди», «ультраяскраві світлодіоди» — це синоніми.

Існує два типи світлодіодів високої яскравості з використанням певних напівпровідникових матеріалів. На основі AlInGaP створюють червоні, жовтогарячі, жовті й зелені світлодіоди високої яскравості. Інший матеріал — InGaN, дозволяє створити синій, синьо-зелений, чистий зелений і, разом з жовтим люмінофором, білий колір.

Область застосувань надяскравих світлодіодів може бути умовно розділена на дві широкі категорії, а саме, з використанням прямого світла й освітлення. Пряме світлодіодна світло використовується для передачі інформації, наприклад в алфавітно-цифрових табло й повноклірних відео дисплеях, де світлодіоди формують пікселі дисплея. У сигнальних пристроях також використовується пряме світло. Як приклад, дорожні сигнали – світлофори й знаки, стоп-сигнали й індикатори повороту транспортних засобів. У освітленні світлодіод використовується, щоб освітити поверхню, простір або об'єкт, замість того, щоб бути видимим безпосередньо.

Для живлення світлодіодів потрібні спеціальні джерела, які не тільки стабілізують їх струм, але й усувають залежність деяких параметрів світлодіодів від температури. Джерело живлення є однїєю з основних складових світлодіодного приладу й забезпечує якісні характеристики світильника протягом усього терміну служби. Основними завданнями розроблювача є правильний вибір контролера й побудова схеми живлення з урахуванням багатьох вимог, що часто суперечать одна одній.


1 Загальна частина

1.1 Зростання ролі світлодіодного освітлення

Діоди, що випромінюють світло, (Light-Emitting Diodes — Leds) — технологія, що швидко еволюціонує, яка стає конкурентною в різних системах освітлення. Світлодіодне освітлення, яке часто називають твердотільним, використовують як усередині будинків (комерційних, промислових і житлових), так і зовні (освітлення вулиць і місць паркувань), а також для архітектурного й декоративного підсвічування, де світлодіоди почали застосовувати раніше всього через їхню здатність випромінювати у всьому колірному спектрі.

Протягом деякого часу світлодіоди були ефективним рішенням для архітектурного підсвічування. Сьогодні світлодіоди стають основою для більшості пристроїв освітлення завдяки ряду переваг у порівнянні з іншими джерелами світла:

- Вони мають більший термін служби, ніж інші джерела світла. Світлодіоди можуть відпрацювати 50000 годин, тоді як ресурс ламп розжарювання становить від 1000 до 2000 годин, а компактних люмінесцентних ламп (CFL — Compact Fluorescent Lamp) — від 5000 до 10000 годин. Такий помітно більший ресурс робить світлодіоди ідеальним вибором для багатьох комерційних і промислових освітлювальних систем, де високі працезатрати на заміну ламп.

- Їх енергоефективність суттєво вище, ніж у ламп розжарювання й галогенних ламп, і часто перебільшує енергоефективність люмінесцентних ламп. До того ж ККД світлодіодів безупинно поліпшується. За прогнозами ККД білих світлодіодів буде покращена приблизно на 50% у найближчі три-чотири роки.

- Вони мають маленький форм-фактор. Можна зробити світлодіодні лампи в таких форм-факторах, як MR16 і GU10, тоді як для компактних люмінесцентних ламп це неможливо.

- Яскравість їх світіння можна регулювати за допомогою спеціального драйвера.

Застосування люмінесцентних ламп у застосуваннях, що вимагають регулювання яскравості, технічно обмежене. Хоча традиційні конструкції освітлювальних приладів на базі світлодіодів теж зустрічаються з подібними обмеженнями, інноваційні драйвери світлодіодів провідних компаній сумісні із симисторами й імпульсними пристроями регулювання яскравості.

- Вони випромінюють высокоспрямоване світло. На відміну від випромінювачів, створених по інших технологіях, світлодіоди більш підходять для застосувань, подібних прожекторним лампам, які формують вузький потік світла.

- Їх ККД зростаєте зниженням температури. ККД люмінесцентних ламп падає при низьких температурах. Світлодіоди, навпаки, ідеальні для застосувань, що працюють в умовах низьких температур, наприклад у якості освітлювальної лампи в холодильнику.

- Дуже легко змінити колір випромінюваного світла. Це робить RGB-світлодіоди ідеальними для застосування в архітектурному підсвічуванні й системах освітлення типу Mood Lighting (освітлення для настрою), у яких колір світла повинен мінятися в режимі реального часу.

У підсумку можна сказати, що світлодіодні лампи мають істотні переваги перед лампами розжарювання й люмінесцентними лампами. Поступово розроблювачі знаходять нові сфери застосування для свтлодіодних освітлювальних пристроїв. Таким чином, у сьогодення актуальними є дві області застосування світлодіодів: світлодіодні еквіваленти розповсюджених освітлювальних ламп і світлодіодне освітлення з дистанційним керуванням.

Світлодіодні еквіваленти ламп призначені для заміни ламп розжарювання, галогенних або люмінесцентних ламп і випускаються з такими ж патронами. Ці світлодіодні лампи повинні відповідати існуючим форм-факторам і бути сумісними з існуючою інфраструктурою.

Світлодіоди для дистанційно керованого освітлення мають більшу гнучкість, коли потрібно міняти яскравість світіння й колір. Більше того, використання бездротових систем дистанційного керування або керування з передачею даних по мережі змінного струму сприяє появі великої кількості нових областей застосування світлодіодів.

Мало хто буде заперечувати той факт, що ринок світлодіодних еквівалентів традиційних ламп сьогодні — сама швидкозростаюча область застосування світлодіодних освітлювальних пристроїв. Причина настільки швидкого росту досить прозора: для цих світлодіодних аналогів не потрібна нова електрична інфраструктура ( тобто, проводка, трансформатори, регулятори яскравості й патрони), що дає значні переваги новій технології.

Вбудовування світлодіодних ламп в існуючу інфраструктуру вимагає від розроблювачів рішення двох принципових проблем:

- Форм-Фактор. Світлодіодні лампи повинні відповідати форм-факторові колишнього джерела світла.

- Електрична сумісність. Світлодіодні лампи повинні працювати коректно й без мерехтінь в існуючій електричній інфраструктурі.

Існуючий форм-фактор накладає на конструкцію світлодіодної лампи як фізичні ( тобто, плата драйвера повинна бути досить малою), так і теплові обмеження. Ці обмеження самі по собі представляють проблему при створенні конструкції лампи-заміни (наприклад, форм-фактори PAR, R і А). І цю проблему, зокрема, важко розв'язати у випадку малих форм-факторів, таких як MR16 і GU10.

Розміри важливі при конструюванні лампи-заміни, але найчастіше більш критичними є теплові обмеження. Світлодіоди випромінюють тільки видиме світло, вони не випромінюють енергію у вигляді інфрачервоного випромінювання, як інші джерела світла. Таким чином, хоча енергетична ефективність світлодіодів вище, чим у ламп розжарювання або галогенних ламп, вони розсіюють набагато більше тепла за допомогою теплопровідності.

Розсіювання тепла — це також основний фактор, що обмежує світловий потік, який може створити лампа. Сучасні світлодіодні технології навряд чи в стані досягтися рівня яскравості, прийнятного для основного ринку. Для розробки комерційно успішних виробів необхідно подолати обмеження по яскравості й, отже, по відводу тепла.

Із проблемою розсіювання тепла, що виділяється, логічно зв'язане питання часу служби драйверної плати. Щоб випромінювати більше світла, лампа повинна працювати при досить високих температурах (+80...+100°С). При таких температурах ресурс драйверної плати може стати обмеженням для всієї лампи. Найбільшою проблемою, зокрема, є електролітичні конденсатори. Оскільки при таких температурах вони швидко висихають, то термін служби цих конденсаторів не перевищить декількох тисяч годин, і вони стануть обмежуючим фактором для всієї лампи. Оскільки головною маркетинговою перевагою світлодіодних ламп є їхня довговічність, то проблема відносно невеликого терміну служби електролітичних конденсаторів стає однією з основних проблем для розроблювачів ламп. Відсутність електролітичних конденсаторів збільшує час служби ламп у середньому від 10000 до 90000 годин. Відсутність електролітичних конденсаторів також веде до зменшення габаритів схеми, тому плата драйвера може бути встановлена у світлодіодні лампи, призначені для заміни традиційних ламп із малими формами-факторами.

Для узгодження з електричною інфраструктурою світлодіодні лампи повинні коректно працювати в існуючих системах освітлення, у яких використовуються пристрої регулювання яскравості з фазовим керуванням (симисторні або імпульсні регулятори) і електронні трансформатори. Між лампою й мережею змінної напруги 120/230 В може стояти регулятор яскравості, виконаний на симисторі. Такі регулятори спроектовані для роботи з лампами розжарювання або галогенними лампами, які являють собою повністю резистивне навантаження. Драйвер в еквівалентній світлодіодній лампі, загалом кажучи, не є чисто резистивним навантаженням, до того ж він відрізняється досить нелінійною характеристикою. Через мостовий випрямляч на його вході проходять короткі, потужні кидки струму в моменти, коли хвиля вхідної змінної напруги досягає позитивного або негативного максимуму. Така поведінка драйвера світлодіодної лампи не дає регулятору на симисторі правильно працювати, оскільки не забезпечується необхідний стартовий струм та струм утримання. У результаті регулятор або некоректно включається, або відключається в процесі роботи, а світлодіодна лампа мерехтить неприйнятним способом.