Кора на молодых побегах светло-серо-буроватая, потом темнеет и сереет, к старости делается очень толстой, глубоко-бороздчатой, отделяющейся значительными кусками. На старых деревьях в нижней части ствола кора достигает иногда свыше 10 см толщины. У взрослых деревьев ствол одет продольно глубоко-трещиноватой толстой коркой, которая хорошо защищает его от огня (Коровин, 2001). Лиственница начинает "цвести" при свободном состоянии в возрасте около 15 лет, иногда и ранее, в сомкнутом насаждении – около 20-30 лет. "Цветки" появляются рано весной одновременно с хвоей. Мужские "соцветия" (микростробилы) овально-шаровидные, желтоватые, расположены на безлистных укороченных побегах, преимущественно с нижней стороны ветвей. Состоят из многочисленных тычинок, несущих пыльцу, которая не имеет воздушных мешков и разносится не далеко. Женские "соцветия" (шишечки или макростробилы) продолговатые красные, розовые, зеленые, расположены вертикально, состоят из спирально сидящих на общем стержне чешуй. Опыляются ветром, оплодотворение наступает через месяц. Шишки созревают к осени, раскрываются тогда же или зимой и рассеивают свои крылатые семена на значительные расстояния (в отличии от ели и сосны семена прчно сочленены с крылом). После этого шишки могут сохранятся на дереве несколько лет. Плодоношение начинается в 3-5 лет до старости (Дылис, 1961). Семена косо-обратнояйцевидные, длиной 4-6 мм, твёрдые, серовато или желтовато-светло-бурые; крылышко 4-5 мм. длиной, ланцетовидное, с одной стороны – прямое, с другой – закруглённое; вместе с семенем длина 12-13 мм. Всхожесть семян Сибирской лиственницы обычно не очень велика и быстро падает. Корневая система лиственницы сильно разветвлена, глубокая, с хорошо развитым стержневым корнем. Её строение в значительной степени зависит от особенностей почвы. Укрепляется прочно и неветровальна, по крайней мере, если растет на достаточно сухих почвах. Размножается лиственница семенами (особенно хорошо на участках, пройденных низовыми пожарами), отводками, в культуре – также летними черенками. Растет лиственница первые годы быстро, имея максимум прироста между 30-40 годами, когда её прирост в отдельные годы достигает 1 м. в год. Как крайний предел продолжительность жизни сибирской лиственницы считается 350 лет; к этому возрасту она достигает 45 м. высоты и 1,75 м. в диаметре на высоте груди, утолщаясь значительно к комлю (Тихомиров, Фалалеев, 1961). Быстро растущая (наиболее интенсивно растёт до 80-100 лет), светолюбивая, неприхотливая к почве, исключительно морозоустойчивая, долговечная (доживает до 300-400, а некоторые деревья до 800-900 лет) порода. Благодаря быстрому росту, ажурной кроне, покрытой нежной ярко-зелёной хвоей, которая осенью окрашивается в золотистые тона, весьма декоративна. Широко используется в лесной культуре и для озеленения городов Европейской части России (Дылис, 1981).
Лиственница является господствующей породой светлохвойной тайги. Образует чистые и смешанные с елью, сосной, пихтой древостои. Благодаря быстрому росту, высокой продуктивности лиственницы способны существенно повышать продуктивность лесов и поэтому широко внедряются в лесные культуры. Лиственница хорошо переносит смытые почвы на склонах и по берегам оврагов, что позволяет широко использовать ее при облесении оврагов в борьбе с эрозией почвы.
Лиственница своим опадом улучшает почву. Исследования в различных географических и почвенных условиях показали, что она благоприятно влияет на лесорастительные свойства и плодородие почв.П.С. Погребняк (1955) отметил, что под лиственницей увеличиваются запасы фосфора, мощность горизонтов А+В, содержание гумуса и обменных оснований в почве за счет кальция, магния, подвижных форм Р2О5 и К2О, а также подвижного F2О3. Кроме этого, в лиственничных насаждениях затушевывается подзолообразовательный процесс.
Особенно важное лесообразующее (огромные ареалы) и экономическое значение имеют три вида лиственницы – сибирская, Сукачева и Гмелина. Древесина с большим красноватым ядром и узкой светлой заболонью (в отличие от древесины сосны и ели), твёрдая высокопрочная, устойчива к гниению (Венеция стоит на лиственничных сваях), но легко растрескивается, и коробиться при высыхании. Из-за своей тяжести (плотность 620-700 кг/м3) непригодна для сплава, что ограничивает её заготовку. Используется для строительства гидротехнических сооружений, судостроения, для получения целлюлозы, спирта, идет на пиломатериалы и др. Большой интерес представляет прижизненное использование лиственницы. При подсочке ее может быть получено значительное количество лиственничной живицы, которая по своей ценности намного превосходит сосновую живицу. Кора лиственницы является ценным сырьем для получения дубильных веществ, других химических продуктов, могущих найти применение в различных отраслях народного хозяйства, в частности, в металлургии.
В хвое о содержании эфирных масел, витамина С, а также минеральных элементов, обогащающих почву при ежегодном сбрасывании хвои, отмечал В.П. Тимофеев (1961). По сравнению с другими сосновыми лиственница лучше выдерживает атмосферу города (благодаря листопадности) и широко применяется в озеленении, а также в защитном лесоразведении.
Определение наследственности как свойство организмов обеспечивать материальную и функциональную преемственность поколений, определённый план строения и характер их индивидуального развития, а также норму реакции на условия внешней среды приводится в работе А.Я. Любавской "Лесная селекция и генетика" (1982). Такое понятие включает учение о наследственности как основном свойстве живых существ воспроизводить себе подобных в системе поколений. Оно указывает, что наследственность является итогом исторического развития предков, представленного программой индивидуального развития особей. Наследственность рассматривается как свойство, как вещество и как взаимоотношение определенных биологических структур между собой и внешней средой. Преемственность поколений, и есть наследственность. Учение о наследственности неразрывно связано с именем Г. Менделя, открывшего дискретность наследственных факторов. Он разработал метод генетического анализа, при помощи которого была раскрыта материальная природа факторов наследственности.
В первом десятилетии ХХ в. Учение о наследственности утверждалось на основе многочисленных опытов с растениями, животными и микроорганизмами. Многообразие и сложность явлений наследственности требовали более совершенных методов исследований. Хромосомная теория наследственности, созданная Т. Морганом в 1910 г., утвердила материалистическую сущность генетики и показала, что ген представляет собой материальную структуру в хромосомах ядра клетки.
Важнейшим событием в изучении наследственности в период 1944-1953 гг. явились результаты исследований, доказавших, что не белок, а молекулы дезоксирибонуклеиновой кислоты (ДНК), входящей в состав хромосом, несут в себе запись (код) генетической информации.
В результате структурного анализа молекулы ДНК оказалось, что сущность наследственности заключена в воспроизведении процессов материального взаимодействия молекул закодированной структуры генетической информации ДНК и белков в сложной, постоянно развивающейся системе живого организма. Живое отличается от не живого способностью воспроизводить себе подобное. Это возможно только потому, что живая система несёт в себе закодированную в молекулярных структурах генетическую информацию, программирующую воспроизведение. Без этой информации, т.е. без наследственности, не может быть жизни.
Таким образом, ген, как единица наследственности, определяет отдельный элементарный признак, который в свою очередь может отражать структуру белковой молекулы. При изучении наследственности как одного из свойств живого организма различают два понятия: наследственность и наследование. В понятие наследственности входит свойство генов детерминировать построению специфической молекулы, развитие признаков и план строения организма. Наследование отражает процесс передачи задатков наследственно детерминированных признаков и свойств организма от одного поколения к другому при размножении.
Открытие Г. Менделем явлений доминирования, расщепления и независимого комбинирования признаков относится к закономерностям наследования.
Наследственность изучается на разных уровнях организации живой материи: молекулярном, хромосомном, клеточном, организменном и популяционном (Любавская, 1982).
Главными клеточными структурами, ответственными за сохранение и передачу по наследству специфических видовых признаков, являются ядро и содержащиеся в нем хромосомы. Комплекс хромосом в клетке называется хромосомным набором. Различают два основных типа хромосомных наборов: гаплоидный и диплоидный. Гаплоидный (одиночный) набор имеют клетки гаметофита (включая половые клетки), он обозначается буквой п. Диплоидный набор образуется в процессе оплодотворения и состоит из двух гаплоидных наборов – материнского и отцовского. Буквенное обозначение его-2п.
Число хромосом в вегетативных (соматических) клетках различных видов растений может варьировать, но для клеток одного вида, за редким исключением, оно остаётся постоянным. Разные виды организмов различаются между собой не только числом хромосом в наборе, но и их индивидуальной морфологией. Когда говорят о морфологии хромосом, то чаще всего имеют в виду метафазные хромосомы. На стадии метафазы и ранней анафазы митоза и мейоза легче всего определяются форма и размеры хромосом. В это время они имеют вид нитей или палочек, округлых в сечении (Тренин, 1988). При описании отдельных хромосом обычно указывают на следующие признаки: размер хромосомы и ее отдельных частей, наличие и местоположение первичных и вторичных перетяжек, присутствие спутника хромосомы. Совокупность всех морфологических признаков (включая и число хромосом), по которым возможна идентификация данного хромосомного набора, называется кариотипом.