Смекни!
smekni.com

Рост пленки на подложке (стр. 3 из 3)

где п = 3, m = 1 при испарении — конденсации; п = 5, т = 2 при объемной диффузии; п - 7, т - 3 при поверхностной диффузии. Величина а(т) является функцией температуры и включает физические константы материала, ответственного за данный механизм переноса. Эти выражения справедливы только для начальных стадий роста шейки.

Возможными механизмами переноса массы при коалесценции являются объемная и поверхностная диффузии. Однако, основываясь на экспериментальных фактах, считают, что основным механизмом является поверхностная диффузия, которая проявляется тем сильнее, чем меньше частицы. Так как образование шеек заметного размера происходит за короткое время (0,06 с), наиболее удовлетворительно этот процесс можно объяснить с помощью поверхностной диффузии.

Движущей силой всех процессов, аналогичных жидкостным, является результирующее уменьшение поверхностной энергии. Если поверхностная энергия не зависит от ориентации кристалла, площадь поверхности будет стремиться уменьшиться до минимума. Наблюдения показывают, что после того, как при коалесценции произошло основное уменьшение поверхностной энергии, дополнительное ее уменьшение происходит за счет образования граничных плоскостей с предпочтительной кристаллографической ориентацией, что приводит к образованию островков с хорошо развитой кристаллической огранкой. Если такой островок вновь принимает участие в коалесценции, кристаллографические формы мгновенно округляются. Это можно объяснить, если предположить, что конфигурация, обеспечивающая минимум энергии, нарушается сразу, как только два соседних островка соприкоснутся, и между ними станет возможным интенсивный обмен атомами. Можно также ожидать, что углы треугольных и шестиугольных островков будут наиболее эффективными источниками подвижных атомов, так что они должны быстро округлиться. Несмотря на то, что начальные стадии коалесценции даже очень больших островков проходят за очень короткое время, островок, образующийся в результате этого процесса, продолжает менять свою форму в течение довольно длительного времени. Площадь островка также изменяется во время коалесценции и после нее. За несколько секунд происходит резкое уменьшение площади подложки, покрытой островками, а после этого начинается ее более медленное увеличение. Когда коалесценция только начинается, уменьшение площади островков и увеличение их высоты приводит к понижению полной поверхностной энергии. Если учесть относительную величину поверхностных энергии подложки и конденсата, а также энергию границы раздела, получим, что минимальной энергии островка соответствует определенная форма с определенным отношением высоты к диаметру. На рис. 6 показано изменение площади составного островка Аи на подложке MoS2 при 400° С во время и после коалесценции, измеренное с помощью электронного микроскопа Было показано, что перед срастанием между двумя островками образуется мостик. Однако это наблюдение не было подтверждено в других работах, и есть предположение, что этот эффект обусловлен загрязнениями.[6]


Рис. 6. Изменение площади составного островка во время коалесценции и после нее.[7]

Образование каналов

По мере роста островков тенденция к тому, что после срастания они становятся совершенно круглыми, уменьшается. Большие изменения формы еще имеют место, но они в основном ограничиваются областями в непосредственной близости от места соединения островков. Следовательно, островки вытягиваются и стремятся образовать непрерывную сетчатую структуру, в которой конденсированный материал разделен длинными, узкими каналами неправильной формы, шириной от 50 до 200 Å. Так как конденсация продолжается, в этих каналах будет происходить вторичное зародышеобразование, и эти зародыши объединятся с областями сплошной пленки, как только они вырастут и коснутся стенок канала. В этот момент в определенных точках канала возникнут мостики, и каналы быстро заполнятся подобно тому, как это происходит в жидкости. В конце концов, большинство каналов исчезает, и пленка становится непрерывной, однако она содержит много мелких, беспорядочно расположенных дырок. Внутри этих дырок на подложке образуются вторичные зародыши, и они объединяются с областями непрерывной пленки (так же, как капли в жидкости). Дырка содержит много вторичных зародышей, которые срастаются друг с другом и образуют вторичные островки, а они уже достигают краев дырки и срастаются с основной пленкой, так что дырка становится чистой. В ней снова образуются вторичные зародыши, и процесс повторяется до тех пор, пока вся дырка не заполнится.

До тех пор, пока не образуется сплошная пленка, поведение конденсата остается аналогичным доведению жидкости. На стадии роста, характеризующейся образованием каналов и дырок, вторичные зародыши (островки) объединяются с более массивными областями пленки менее, чем за 0,1 с. Можно также наблюдать за процессом заполнения канала, когда поперек канала образуется мостик конденсата, и конденсирующаяся фаза растекается вдоль канала со скоростями порядка 1-300 Å/с. Оказывается, что канал при этом заполняется не полностью и вначале двигается только очень тонкий слой, а утолщение его происходит за гораздо большее время. Каналы обычно бывают очень нерегулярными, а граничные области имеют кристаллическую огранку. Ясно, что процессы срастания зародышей с основной пленкой и быстрого исчезновения каналов аналогичны процессам, происходящим в жидкости и являются проявлением одного и того же физического эффекта, а именно, минимизации полной поверхностной энергии нарастающего материала путем ликвидации областей с высокой кривизной поверхности.

Образование сплошной пленки

В процессе роста пленки, особенно при коалесценции, происходят заметные изменения ориентации островков. Это особенно важно для эпитаксиального роста пленок. Общий механизм роста поликристаллических слоев похож на механизм роста эпитаксиальных пленок, за исключением того, что срастающиеся островки в этом случае имеют произвольную относительную ориентацию, подчиняющуюся случайному закону распределения. Обнаружено, что во время срастания происходит рекристаллизация, так что размер зерен в готовой пленке много больше среднего расстояния между начальными зародышами. Это иллюстрирует серия фотографий на рис. 13, на которых показаны различные этапы роста поликристаллической золотой пленки на угольной подложке. Для всех четырех образцов осаждение началось одновременно; для того, чтобы менять время осаждения от образца к образцу, использовалась движущаяся заслонка. Существенная рекристаллизация происходит даже, если подложка находится при комнатной температуре; при этом в каждом зерне объединяются 100 или больше первоначальных зародышей. Таким образом, фактором, определяющим размер зерен в готовой пленке, является не первоначальная концентрация зародышей, а процесс рекристаллизации, происходящий при коалесценции зародышей или островков.[8]

Рис. 7. Последовательные этапы роста поликристаллической пленки золота на угольной подложке при 20° С.

Список использованной литературы

зародыш пленка островок коалесценция канал

1. Р. Берри и др. Тонкопленочные технологии. – М.: «Энергия» 1972г.

2. Технология тонких пленок. Справочник под ред. Л. Майссела, Р. Глэнга – М.: Советское радио, 1977г. 1Т.

3. Технология тонких пленок. Справочник под ред. Л. Майссела, Р. Глэнга – М.: Советское радио, 1977г. 2Т.

4. «Получение пленок» с сайта http://www.eltech.ru/kafedrs/fet‗eips/golman/book

5. «Модельные представления начальных стадий роста пленок» с сайта http://ioffe.org/woe/8201/study/andreev/index.html

6. «Термодинамика образования зародышей пленки» с сайта http://pereplet.ru/obrazovanie/plenki

7. «Получение пленок» с сайта http://ktf.krk.ru/courses


[1] Р. Берри и др. Тонкопленочные технологии

[2]http://ioffe.org/woe/8201/study/andreev/index.html

[3]http://www.eltech.ru/kafedrs/fet‗eips/golman/book

[4]http://ioffe.org/woe/8201/study/andreev/index.html

[5] Технология тонких пленок.

[6] Р. Берри и др. Тонкопленочные технологии

[7] http://ktf.krk.ru/courses

[8] Р. Берри и др. Тонкопленочные технологии