Эффективность функционирования МТА на различных режимах работы оценивается частными
и обобщенными вероятностными коэффициентами, предложенными профессором Л.Е. Агеевым. Частный коэффициент определяется как отношение математического ожидания показателя к его номинальному значению : .При установлении оптимальных нагрузочных режимов МТА в качестве критериев оптимальности были приняты экстремумы математических ожиданий: удельного расхода топлива
; прямых эксплуатационных затрат на 1 га и обобщенных коэффициентов .Непрерывные изменения нагрузки трактора при выполнении машинно-тракторным агрегатом технологических операций приводит к такому же изменению максимальных значений эффективной мощности двигателя и минимальных значений удельных эффективного и погектарного расходов топлива.
Наибольшее отклонение наблюдается для эффективной мощности двигателя, что обусловлено более крутым изломом ее характеристики по сравнению с другими показателями. Таким образом, при более пологой характеристике и менее крутом изломе ее в зоне распределения случайной нагрузки, колебательный характер нагрузки оказывает меньшее влияние на выходной показатель двигателя.
Оптимальный нагрузочный режим
выбираем по минимуму обобщенного критерия , который можно рассматривать как компромиссный.Рисунок - Зависимость эффективной мощности и удельного эффективного расхода топлива от степени загрузки и неравномерности момента сопротивления на входе в двигатель.
При коэффициенте вариации момента сопротивления на входе в двигатель
экстремальный уровень нагрузки двигателей изменяется в пределах , а минимальный уровень удельного эффективного расхода топлива при максимальном уровне эффективной мощности . Обеспечение оптимального загрузочного режима позволит повысить эффективную мощность на 3,1% и снизить удельный расход топлива на3,4%.Таким образом, предложенная вероятностная математическая модель двигателя тягово-приводного агрегата позволила теоретически на основе априорной информации оценить эффективность функционирования МТА скомплектованного на базе трактора с тягово-прицепным модулем.
Непрерывные изменения нагрузки трактора при выполнении машинно-тракторным агрегатом технологических операций требует непрерывного автоматического контроля за обеспечением оптимальности режимов работы тракторного двигателя, что в настоящее время с развитием микропроцессорной техники стало возможным.
При обосновании оптимальных конструктивных параметров комбинированного почвообрабатывающего агрегата на базе технологического модуля авторами были учтены характеристики тракторов, режимов работы созданных на их базе мобильных энергетических систем и почвенные условия эксплуатации.
В основу оптимизации авторами было взято положение, что сменная производительность
зависит от рабочих ширины захвата и скорости агрегата, и коэффициента использования времени смены. Учитывалось неоднозначное влияние на рост производительности увеличение рабочих скорости и ширины агрегата.Повышение рабочей скорости агрегата приводит к увеличению производительности МТА, но одновременно, увеличивает удельное тяговое сопротивление агрегата, которое зависит от почвенных условий, и приводит к повышению энергоёмкости операции. Повышение производительности МТА за счет увеличения рабочей ширины захвата агрегата приводит к увеличению тягового сопротивления и снижению скорости движения, а соответственно и производительности.
Таким образом, оптимизация параметров и режимов работы (рабочей ширина захвата
и рабочей скорости различных МТА по максимуму возможна с учетом почвенных условий и влияния скорости на изменение удельного сопротивления агрегата.Авторами была проведена оптимизация параметров и режимов работы приводных машинно-тракторных агрегатов с комбинированными почвообрабатывающими агрегатами по максимуму теоретической производительности для МТА с тракторами класса 1,4; 2 и 3 для различных по механическому составу почв: песчаных, супесчаных; суглинистых: лёгких, средних, тяжёлых.
Анализ полученных результатов позволил сделать вывод, что достигаемая максимальная теоретическая производительность на различных почвах меняется в широком диапазоне (в 2,6…2,7 раза). Наибольшую теоретическую производительность на каждом типе почв имеют МТА с более мощными тракторами. Оптимальная рабочая ширина захвата каждого из рассматриваемых МТА изменяется более чем в три раза в зависимости от механического состава почв. Для эффективного использования МТА с трактором МТЗ-82 необходимо комплектовать комбинированный почвообрабатывающий агрегат шириной захвата от 2,06 до 5,50 м. Диапазон оптимальных рабочих скоростей МТА является узким (от 6,0 до 7,6 км/ч) и зависит более от класса трактора, чем от типа почв.
По результатам расчетов авторами был сделан выбор оптимальных рабочих скорости и ширины комбинированного почвообрабатывающего агрегата для различных почвенных условий. Учитывая то, что для различных условий работы МТА необходимо иметь комбинированный почвообрабатывающий агрегат с изменяющейся в широких пределах рабочей шириной захвата, за основу была принята конструкция в виде технологического модуля - рамы с ведущими колесами и набором различного количества рабочих модулей. Рабочие модули должны легко соединяться друг с другом в любом сочетании в единый агрегат.
2. Конструкторская часть
2.1 Описание конструкторской разработки
Разработанный образец модульной системы агрегатирования комплектуется из трактора тягово-энергетической концепции и тягово-прицепного модуля с навешенной на него сельскохозяйственной машины, или комплектуется из трактора тягово-энергетической концепции и технологического модуля.
Тягово-приценной модуль макетного образеца тягово-приводного МТА выполнен с использованием корпуса заднего моста трактора МТЗ-80 и заднего ведущего моста автомобиля ГАЗ-52. Тягово-прицепной модуль навешивается на треугольник заднего навесного механизма трактора МТЗ-80/82 или МТЗ-1221 и имеет привод от его вала отбора мощности (ВОМ). Все элементы соединения (навесное устройство, ВОМ, гидро-, пневмо- и электрокоммуникации) обычные. Для стыковки трактора и тягово-прицепного модуля, последний оснащен передней выдвижной опорой. Тягово-прицепной модуль представляет собой тележку с активными колесами оснащенную универсальным гидравлическим навесным оборудованием, необходимым для выполнения полевых технологических операций. Привод ведущих колес тягово-технологического модуля осуществляется через вал отбора мощности трактора. Таким образом, МТА сформированный на базе колесного трактора имеет дополнительный ведущий мост, что позволяет использовать сцепной вес не только трактора, но и тягово-прицепного модуля с навешанным на него сельскохозяйственным орудием.
Существующий энергетический модуль оснащен приводным редуктором, гидронавеской трактора МТЗ-80 и ведущими колесами. Вращение от вала отбора мощности трактора к энергетическому модулю передается через карданный вал и приводной редуктор. Для того чтобы присоединить энергетический модуль к трактору изготавливаются тяга и раскос. К тяге присоединяется прицепное ушко, для того чтобы присоединить к навеске трактора. Тяга крепиться на мост модуля при помощи хомутов, которые привариваются к тяге. Раскос приваривается наверх тяги. Между раскосом итягой устанавливаются втулки для прочности. На раскос сверху устанавливается плита, которая служит для закрепления гидроцилиндра и поворотного вала гидросистемы. Тяги гидросистемы модуля крепятся на ведущий мост при помощи креплений.В плите, раскосе и тяге сверлиться отверстия, для скрепления этих деталей шпильками.