11. Упрощенный расчет средней арифм. (ср. ар.) (способ моментов).
Пользуясь св-ми ср. ар., ее можно рассчитать след. образом: 1) вычесть из всех вариант постоянное число (лучше значение серединной варианты); 2) разделить варианты на постоянное число – на величину интервала; 3) частоты выразить в %. Вычисление ср. ар. первыми двумя способами называется способом отсчета от условного начала (способом моментов). Этот способ применяется в рядах с разными интервалами. Ср. ар. в этом случае опред. по ф-ле:
12. Мода и медиана.
Модой (Мо) называют значение признака, которое встречается наиболее часто у единиц совокупности. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой. Чтобы найти конкретное значение моды, необходимо использовать формулу
где xМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.
Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.
Данное св-во положено в основу метода наименьших квадратов, кот. широко применяется в исследовании стат. взаимосвязей.
14. Виды дисперсий. Правило их сложения.
15. Виды средних. Их исчисление.
16. Показатели вариации, применяемые в статистике.
Вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления. Для измерения вариации в статистике применяют несколько способов. Наиболее простым явл расчет показателя размаха вариации Н как разницы между Xmax и Xmin: H=Xmax - Xmin. Но размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается. Среднее линейное отклонениеd - среднее арифметическое значение абсолютных отклонений признака от его среднего уровня: d = (Xi – X средн) / n. При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной. В статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии: δ = (Xi – X средн)2/n. Показатель s, равный √δ2, называется средним квадратическим отклонением. Величина Mx = √(δ2/n)-средняя ошибка выборки и явля хар-кой отклонения выборочного среднего значения призн от его истинной средней величины. Показатель средней ошибки использ при оценке достоверности результатов выборочн наблюд. Коэфф осцилляции отражает относит колеблемость крайних значений признака вокруг средней: Ko = (R/X средн)*100%. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины Kd = (d средн/ X средн)*100%. Коэффициент вариации: V = (δ/X средн)*100%
17. Простейшие приёмы обработки рядов динамики.
Простейшими видами обработки рядов динамики являются: укрупнение интервалов, метод скользящей средней, аналитическое выравнивание, экстраполяция и интерполяция.
Укрупнение интервалов. Ряд динамики разделяют на достаточно большое число равных интервалов. Если средн уровни по интервалам не позволяют увидеть тенденцию разв, переходят к расчету уровней за большие промежутки времени, увеличивая длину каждого интервала (уменьшая количество интервалов). Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Для того чтобы создать модель, выражающую основную тенденцию изменения уровней динамического ряда во времени, используется аналитическое выравнивание ряда динамики. Простейшими моделями, выражающими тенденцию развития, являются: линейная функция прямой, показательная функция, парабола, парабола n-порядка, гипербола, экспонента. Иногда возникает необходимость предвидеть будущий уровень ряда динамики. В таких случаях прибегают к приему обработки рядов динамики, называемому экстраполяцией: yn+1 = yn + ∆yn +∆∆yn, гдеyn+1 - неизвестный уровень ряда, yn - последний известный уровень ряда, ∆yn - цепной абсолютный прирост последнего уровня ряда (∆yn = yn - yn-1), ∆∆yn - изменение прироста последнего уровня ряда. Наряду с экстраполяцией иногда применяется такой прием обработки рядов динамики, как интерполяция - искусственное нахождение отсутствующих членов внутри динамического ряда. Неизвестный уровень ряда находится по формуле: yi = (yi+1 + yi-1) / 2. Где: yi - неизвестный уровень ряда, yi+1 - последующий за неизвестным уровень ряда, yi-1 - предыдущий уровень ряда.